95,397 research outputs found

    Watersheds, waterfalls, on edge or node weighted graphs

    Full text link
    We present an algebraic approach to the watershed adapted to edge or node weighted graphs. Starting with the flooding adjunction, we introduce the flooding graphs, for which node and edge weights may be deduced one from the other. Each node weighted or edge weighted graph may be transformed in a flooding graph, showing that there is no superiority in using one or the other, both being equivalent. We then introduce pruning operators extract subgraphs of increasing steepness. For an increasing steepness, the number of never ascending paths becomes smaller and smaller. This reduces the watershed zone, where catchment basins overlap. A last pruning operator called scissor associates to each node outside the regional minima one and only one edge. The catchment basins of this new graph do not overlap and form a watershed partition. Again, with an increasing steepness, the number of distinct watershed partitions contained in a graph becomes smaller and smaller. Ultimately, for natural image, an infinite steepness leads to a unique solution, as it is not likely that two absolutely identical non ascending paths of infinite steepness connect a node with two distinct minima. It happens that non ascending paths of a given steepness are the geodesics of lexicographic distance functions of a given depth. This permits to extract the watershed partitions as skeletons by zone of influence of the minima for such lexicographic distances. The waterfall hierarchy is obtained by a sequence of operations. The first constructs the minimum spanning forest which spans an initial watershed partition. The contraction of the trees into one node produces a reduced graph which may be submitted to the same treatment. The process is iterated until only one region remains. The union of the edges of all forests produced constitutes a minimum spanning tree of the initial graph

    Exact Distance Oracles for Planar Graphs

    Full text link
    We present new and improved data structures that answer exact node-to-node distance queries in planar graphs. Such data structures are also known as distance oracles. For any directed planar graph on n nodes with non-negative lengths we obtain the following: * Given a desired space allocation S[nlglgn,n2]S\in[n\lg\lg n,n^2], we show how to construct in O~(S)\tilde O(S) time a data structure of size O(S)O(S) that answers distance queries in O~(n/S)\tilde O(n/\sqrt S) time per query. As a consequence, we obtain an improvement over the fastest algorithm for k-many distances in planar graphs whenever k[n,n)k\in[\sqrt n,n). * We provide a linear-space exact distance oracle for planar graphs with query time O(n1/2+eps)O(n^{1/2+eps}) for any constant eps>0. This is the first such data structure with provable sublinear query time. * For edge lengths at least one, we provide an exact distance oracle of space O~(n)\tilde O(n) such that for any pair of nodes at distance D the query time is O~(minD,n)\tilde O(min {D,\sqrt n}). Comparable query performance had been observed experimentally but has never been explained theoretically. Our data structures are based on the following new tool: given a non-self-crossing cycle C with c=O(n)c = O(\sqrt n) nodes, we can preprocess G in O~(n)\tilde O(n) time to produce a data structure of size O(nlglgc)O(n \lg\lg c) that can answer the following queries in O~(c)\tilde O(c) time: for a query node u, output the distance from u to all the nodes of C. This data structure builds on and extends a related data structure of Klein (SODA'05), which reports distances to the boundary of a face, rather than a cycle. The best distance oracles for planar graphs until the current work are due to Cabello (SODA'06), Djidjev (WG'96), and Fakcharoenphol and Rao (FOCS'01). For σ(1,4/3)\sigma\in(1,4/3) and space S=nσS=n^\sigma, we essentially improve the query time from n2/Sn^2/S to n2/S\sqrt{n^2/S}.Comment: To appear in the proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms, SODA 201

    Proving Continuity of Coinductive Global Bisimulation Distances: A Never Ending Story

    Get PDF
    We have developed a notion of global bisimulation distance between processes which goes somehow beyond the notions of bisimulation distance already existing in the literature, mainly based on bisimulation games. Our proposal is based on the cost of transformations: how much we need to modify one of the compared processes to obtain the other. Our original definition only covered finite processes, but a coinductive approach allows us to extend it to cover infinite but finitary trees. After having shown many interesting properties of our distance, it was our intention to prove continuity with respect to projections, but unfortunately the issue remains open. Nonetheless, we have obtained several partial results that are presented in this paper.Comment: In Proceedings PROLE 2015, arXiv:1512.0617

    Exact Distance Oracles for Planar Graphs with Failing Vertices

    Full text link
    We consider exact distance oracles for directed weighted planar graphs in the presence of failing vertices. Given a source vertex uu, a target vertex vv and a set XX of kk failed vertices, such an oracle returns the length of a shortest uu-to-vv path that avoids all vertices in XX. We propose oracles that can handle any number kk of failures. More specifically, for a directed weighted planar graph with nn vertices, any constant kk, and for any q[1,n]q \in [1,\sqrt n], we propose an oracle of size O~(nk+3/2q2k+1)\tilde{\mathcal{O}}(\frac{n^{k+3/2}}{q^{2k+1}}) that answers queries in O~(q)\tilde{\mathcal{O}}(q) time. In particular, we show an O~(n)\tilde{\mathcal{O}}(n)-size, O~(n)\tilde{\mathcal{O}}(\sqrt{n})-query-time oracle for any constant kk. This matches, up to polylogarithmic factors, the fastest failure-free distance oracles with nearly linear space. For single vertex failures (k=1k=1), our O~(n5/2q3)\tilde{\mathcal{O}}(\frac{n^{5/2}}{q^3})-size, O~(q)\tilde{\mathcal{O}}(q)-query-time oracle improves over the previously best known tradeoff of Baswana et al. [SODA 2012] by polynomial factors for q=Ω(nt)q = \Omega(n^t), t(1/4,1/2]t \in (1/4,1/2]. For multiple failures, no planarity exploiting results were previously known

    Faster Separators for Shallow Minor-Free Graphs via Dynamic Approximate Distance Oracles

    Full text link
    Plotkin, Rao, and Smith (SODA'97) showed that any graph with mm edges and nn vertices that excludes KhK_h as a depth O(logn)O(\ell\log n)-minor has a separator of size O(n/+h2logn)O(n/\ell + \ell h^2\log n) and that such a separator can be found in O(mn/)O(mn/\ell) time. A time bound of O(m+n2+ϵ/)O(m + n^{2+\epsilon}/\ell) for any constant ϵ>0\epsilon > 0 was later given (W., FOCS'11) which is an improvement for non-sparse graphs. We give three new algorithms. The first has the same separator size and running time O(\mbox{poly}(h)\ell m^{1+\epsilon}). This is a significant improvement for small hh and \ell. If =Ω(nϵ)\ell = \Omega(n^{\epsilon'}) for an arbitrarily small chosen constant ϵ>0\epsilon' > 0, we get a time bound of O(\mbox{poly}(h)\ell n^{1+\epsilon}). The second algorithm achieves the same separator size (with a slightly larger polynomial dependency on hh) and running time O(\mbox{poly}(h)(\sqrt\ell n^{1+\epsilon} + n^{2+\epsilon}/\ell^{3/2})) when =Ω(nϵ)\ell = \Omega(n^{\epsilon'}). Our third algorithm has running time O(\mbox{poly}(h)\sqrt\ell n^{1+\epsilon}) when =Ω(nϵ)\ell = \Omega(n^{\epsilon'}). It finds a separator of size O(n/\ell) + \tilde O(\mbox{poly}(h)\ell\sqrt n) which is no worse than previous bounds when hh is fixed and =O~(n1/4)\ell = \tilde O(n^{1/4}). A main tool in obtaining our results is a novel application of a decremental approximate distance oracle of Roditty and Zwick.Comment: 16 pages. Full version of the paper that appeared at ICALP'14. Minor fixes regarding the time bounds such that these bounds hold also for non-sparse graph

    Efficient Construction of Probabilistic Tree Embeddings

    Get PDF
    In this paper we describe an algorithm that embeds a graph metric (V,dG)(V,d_G) on an undirected weighted graph G=(V,E)G=(V,E) into a distribution of tree metrics (T,DT)(T,D_T) such that for every pair u,vVu,v\in V, dG(u,v)dT(u,v)d_G(u,v)\leq d_T(u,v) and ET[dT(u,v)]O(logn)dG(u,v){\bf{E}}_{T}[d_T(u,v)]\leq O(\log n)\cdot d_G(u,v). Such embeddings have proved highly useful in designing fast approximation algorithms, as many hard problems on graphs are easy to solve on tree instances. For a graph with nn vertices and mm edges, our algorithm runs in O(mlogn)O(m\log n) time with high probability, which improves the previous upper bound of O(mlog3n)O(m\log^3 n) shown by Mendel et al.\,in 2009. The key component of our algorithm is a new approximate single-source shortest-path algorithm, which implements the priority queue with a new data structure, the "bucket-tree structure". The algorithm has three properties: it only requires linear time in the number of edges in the input graph; the computed distances have a distance preserving property; and when computing the shortest-paths to the kk-nearest vertices from the source, it only requires to visit these vertices and their edge lists. These properties are essential to guarantee the correctness and the stated time bound. Using this shortest-path algorithm, we show how to generate an intermediate structure, the approximate dominance sequences of the input graph, in O(mlogn)O(m \log n) time, and further propose a simple yet efficient algorithm to converted this sequence to a tree embedding in O(nlogn)O(n\log n) time, both with high probability. Combining the three subroutines gives the stated time bound of the algorithm. Then we show that this efficient construction can facilitate some applications. We proved that FRT trees (the generated tree embedding) are Ramsey partitions with asymptotically tight bound, so the construction of a series of distance oracles can be accelerated
    corecore