4,240 research outputs found

    Latent Molecular Optimization for Targeted Therapeutic Design

    Full text link
    We devise an approach for targeted molecular design, a problem of interest in computational drug discovery: given a target protein site, we wish to generate a chemical with both high binding affinity to the target and satisfactory pharmacological properties. This problem is made difficult by the enormity and discreteness of the space of potential therapeutics, as well as the graph-structured nature of biomolecular surface sites. Using a dataset of protein-ligand complexes, we surmount these issues by extracting a signature of the target site with a graph convolutional network and by encoding the discrete chemical into a continuous latent vector space. The latter embedding permits gradient-based optimization in molecular space, which we perform using learned differentiable models of binding affinity and other pharmacological properties. We show that our approach is able to efficiently optimize these multiple objectives and discover new molecules with potentially useful binding properties, validated via docking methods

    Interpretable Deep Learning in Drug Discovery

    Full text link
    Without any means of interpretation, neural networks that predict molecular properties and bioactivities are merely black boxes. We will unravel these black boxes and will demonstrate approaches to understand the learned representations which are hidden inside these models. We show how single neurons can be interpreted as classifiers which determine the presence or absence of pharmacophore- or toxicophore-like structures, thereby generating new insights and relevant knowledge for chemistry, pharmacology and biochemistry. We further discuss how these novel pharmacophores/toxicophores can be determined from the network by identifying the most relevant components of a compound for the prediction of the network. Additionally, we propose a method which can be used to extract new pharmacophores from a model and will show that these extracted structures are consistent with literature findings. We envision that having access to such interpretable knowledge is a crucial aid in the development and design of new pharmaceutically active molecules, and helps to investigate and understand failures and successes of current methods.Comment: Code available at https://github.com/bioinf-jku/interpretable_ml_drug_discover

    Modeling polypharmacy side effects with graph convolutional networks

    Full text link
    The use of drug combinations, termed polypharmacy, is common to treat patients with complex diseases and co-existing conditions. However, a major consequence of polypharmacy is a much higher risk of adverse side effects for the patient. Polypharmacy side effects emerge because of drug-drug interactions, in which activity of one drug may change if taken with another drug. The knowledge of drug interactions is limited because these complex relationships are rare, and are usually not observed in relatively small clinical testing. Discovering polypharmacy side effects thus remains an important challenge with significant implications for patient mortality. Here, we present Decagon, an approach for modeling polypharmacy side effects. The approach constructs a multimodal graph of protein-protein interactions, drug-protein target interactions, and the polypharmacy side effects, which are represented as drug-drug interactions, where each side effect is an edge of a different type. Decagon is developed specifically to handle such multimodal graphs with a large number of edge types. Our approach develops a new graph convolutional neural network for multirelational link prediction in multimodal networks. Decagon predicts the exact side effect, if any, through which a given drug combination manifests clinically. Decagon accurately predicts polypharmacy side effects, outperforming baselines by up to 69%. We find that it automatically learns representations of side effects indicative of co-occurrence of polypharmacy in patients. Furthermore, Decagon models particularly well side effects with a strong molecular basis, while on predominantly non-molecular side effects, it achieves good performance because of effective sharing of model parameters across edge types. Decagon creates opportunities to use large pharmacogenomic and patient data to flag and prioritize side effects for follow-up analysis.Comment: Presented at ISMB 201

    Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity

    Full text link
    Empirical scoring functions based on either molecular force fields or cheminformatics descriptors are widely used, in conjunction with molecular docking, during the early stages of drug discovery to predict potency and binding affinity of a drug-like molecule to a given target. These models require expert-level knowledge of physical chemistry and biology to be encoded as hand-tuned parameters or features rather than allowing the underlying model to select features in a data-driven procedure. Here, we develop a general 3-dimensional spatial convolution operation for learning atomic-level chemical interactions directly from atomic coordinates and demonstrate its application to structure-based bioactivity prediction. The atomic convolutional neural network is trained to predict the experimentally determined binding affinity of a protein-ligand complex by direct calculation of the energy associated with the complex, protein, and ligand given the crystal structure of the binding pose. Non-covalent interactions present in the complex that are absent in the protein-ligand sub-structures are identified and the model learns the interaction strength associated with these features. We test our model by predicting the binding free energy of a subset of protein-ligand complexes found in the PDBBind dataset and compare with state-of-the-art cheminformatics and machine learning-based approaches. We find that all methods achieve experimental accuracy and that atomic convolutional networks either outperform or perform competitively with the cheminformatics based methods. Unlike all previous protein-ligand prediction systems, atomic convolutional networks are end-to-end and fully-differentiable. They represent a new data-driven, physics-based deep learning model paradigm that offers a strong foundation for future improvements in structure-based bioactivity prediction

    Synergy Effect between Convolutional Neural Networks and the Multiplicity of SMILES for Improvement of Molecular Prediction

    Full text link
    In our study, we demonstrate the synergy effect between convolutional neural networks and the multiplicity of SMILES. The model we propose, the so-called Convolutional Neural Fingerprint (CNF) model, reaches the accuracy of traditional descriptors such as Dragon (Mauri et al. [22]), RDKit (Landrum [18]), CDK2 (Willighagen et al. [43]) and PyDescriptor (Masand and Rastija [20]). Moreover the CNF model generally performs better than highly fine-tuned traditional descriptors, especially on small data sets, which is of great interest for the chemical field where data sets are generally small due to experimental costs, the availability of molecules or accessibility to private databases. We evaluate the CNF model along with SMILES augmentation during both training and testing. To the best of our knowledge, this is the first time that such a methodology is presented. We show that using the multiplicity of SMILES during training acts as a regulariser and therefore avoids overfitting and can be seen as ensemble learning when considered for testing.Comment: 18 pages, 7 figures, 4 table

    Three-Dimensionally Embedded Graph Convolutional Network (3DGCN) for Molecule Interpretation

    Full text link
    We present a three-dimensional graph convolutional network (3DGCN), which predicts molecular properties and biochemical activities, based on 3D molecular graph. In the 3DGCN, graph convolution is unified with learning operations on the vector to handle the spatial information from molecular topology. The 3DGCN model exhibits significantly higher performance on various tasks compared with other deep-learning models, and has the ability of generalizing a given conformer to targeted features regardless of its rotations in the 3D space. More significantly, our model also can distinguish the 3D rotations of a molecule and predict the target value, depending upon the rotation degree, in the protein-ligand docking problem, when trained with orientation-dependent datasets. The rotation distinguishability of 3DGCN, along with rotation equivariance, provides a key milestone in the implementation of three-dimensionality to the field of deep-learning chemistry that solves challenging biochemical problems.Comment: 39 pages, 14 figures, 5 table

    Uncertainty quantification of molecular property prediction using Bayesian neural network models

    Full text link
    In chemistry, deep neural network models have been increasingly utilized in a variety of applications such as molecular property predictions, novel molecule designs, and planning chemical reactions. Despite the rapid increase in the use of state-of-the-art models and algorithms, deep neural network models often produce poor predictions in real applications because model performance is highly dependent on the quality of training data. In the field of molecular analysis, data are mostly obtained from either complicated chemical experiments or approximate mathematical equations, and then quality of data may be questioned.In this paper, we quantify uncertainties of prediction using Bayesian neural networks in molecular property predictions. We estimate both model-driven and data-driven uncertainties, demonstrating the usefulness of uncertainty quantification as both a quality checker and a confidence indicator with the three experiments. Our results manifest that uncertainty quantification is necessary for more reliable molecular applications and Bayesian neural network models can be a practical approach.Comment: Workshop on "Machine Learning for Molecules and Materials", NIPS 2018. arXiv admin note: substantial text overlap with arXiv:1903.0837

    Constrained Bayesian Optimization for Automatic Chemical Design

    Full text link
    Automatic Chemical Design is a framework for generating novel molecules with optimized properties. The original scheme, featuring Bayesian optimization over the latent space of a variational autoencoder, suffers from the pathology that it tends to produce invalid molecular structures. First, we demonstrate empirically that this pathology arises when the Bayesian optimization scheme queries latent points far away from the data on which the variational autoencoder has been trained. Secondly, by reformulating the search procedure as a constrained Bayesian optimization problem, we show that the effects of this pathology can be mitigated, yielding marked improvements in the validity of the generated molecules. We posit that constrained Bayesian optimization is a good approach for solving this class of training set mismatch in many generative tasks involving Bayesian optimization over the latent space of a variational autoencoder.Comment: Previous versions accepted to the NIPS 2017 Workshop on Bayesian Optimization (BayesOpt 2017) and the NIPS 2017 Workshop on Machine Learning for Molecules and Material

    PADME: A Deep Learning-based Framework for Drug-Target Interaction Prediction

    Full text link
    In silico drug-target interaction (DTI) prediction is an important and challenging problem in biomedical research with a huge potential benefit to the pharmaceutical industry and patients. Most existing methods for DTI prediction including deep learning models generally have binary endpoints, which could be an oversimplification of the problem, and those methods are typically unable to handle cold-target problems, i.e., problems involving target protein that never appeared in the training set. Towards this, we contrived PADME (Protein And Drug Molecule interaction prEdiction), a framework based on Deep Neural Networks, to predict real-valued interaction strength between compounds and proteins without requiring feature engineering. PADME takes both compound and protein information as inputs, so it is capable of solving cold-target (and cold-drug) problems. To our knowledge, we are the first to combine Molecular Graph Convolution (MGC) for compound featurization with protein descriptors for DTI prediction. We used multiple cross-validation split schemes and evaluation metrics to measure the performance of PADME on multiple datasets, including the ToxCast dataset, and PADME consistently dominates baseline methods. The results of a case study, which predicts the binding affinity between various compounds and androgen receptor (AR), suggest PADME's potential in drug development. The scalability of PADME is another advantage in the age of Big Data

    Drug-Drug Adverse Effect Prediction with Graph Co-Attention

    Full text link
    Complex or co-existing diseases are commonly treated using drug combinations, which can lead to higher risk of adverse side effects. The detection of polypharmacy side effects is usually done in Phase IV clinical trials, but there are still plenty which remain undiscovered when the drugs are put on the market. Such accidents have been affecting an increasing proportion of the population (15% in the US now) and it is thus of high interest to be able to predict the potential side effects as early as possible. Systematic combinatorial screening of possible drug-drug interactions (DDI) is challenging and expensive. However, the recent significant increases in data availability from pharmaceutical research and development efforts offer a novel paradigm for recovering relevant insights for DDI prediction. Accordingly, several recent approaches focus on curating massive DDI datasets (with millions of examples) and training machine learning models on them. Here we propose a neural network architecture able to set state-of-the-art results on this task---using the type of the side-effect and the molecular structure of the drugs alone---by leveraging a co-attentional mechanism. In particular, we show the importance of integrating joint information from the drug pairs early on when learning each drug's representation.Comment: 8 pages, 5 figure
    corecore