11,841 research outputs found

    Few-Shot 3D Point Cloud Semantic Segmentation via Stratified Class-Specific Attention Based Transformer Network

    Full text link
    3D point cloud semantic segmentation aims to group all points into different semantic categories, which benefits important applications such as point cloud scene reconstruction and understanding. Existing supervised point cloud semantic segmentation methods usually require large-scale annotated point clouds for training and cannot handle new categories. While a few-shot learning method was proposed recently to address these two problems, it suffers from high computational complexity caused by graph construction and inability to learn fine-grained relationships among points due to the use of pooling operations. In this paper, we further address these problems by developing a new multi-layer transformer network for few-shot point cloud semantic segmentation. In the proposed network, the query point cloud features are aggregated based on the class-specific support features in different scales. Without using pooling operations, our method makes full use of all pixel-level features from the support samples. By better leveraging the support features for few-shot learning, the proposed method achieves the new state-of-the-art performance, with 15\% less inference time, over existing few-shot 3D point cloud segmentation models on the S3DIS dataset and the ScanNet dataset

    3D-BEVIS: Bird's-Eye-View Instance Segmentation

    Full text link
    Recent deep learning models achieve impressive results on 3D scene analysis tasks by operating directly on unstructured point clouds. A lot of progress was made in the field of object classification and semantic segmentation. However, the task of instance segmentation is less explored. In this work, we present 3D-BEVIS, a deep learning framework for 3D semantic instance segmentation on point clouds. Following the idea of previous proposal-free instance segmentation approaches, our model learns a feature embedding and groups the obtained feature space into semantic instances. Current point-based methods scale linearly with the number of points by processing local sub-parts of a scene individually. However, to perform instance segmentation by clustering, globally consistent features are required. Therefore, we propose to combine local point geometry with global context information from an intermediate bird's-eye view representation.Comment: camera-ready version for GCPR '1
    • …
    corecore