2,450 research outputs found

    Show Me Your Claims and I\u27ll Tell You Your Offenses: Machine Learning-Based Decision Support for Fraud Detection on Medical Claim Data

    Get PDF
    Health insurance claim fraud is a serious issue for the healthcare industry as it drives up costs and inefficiency. Therefore, claim fraud must be effectively detected to provide economical and high-quality healthcare. In practice, however, fraud detection is mainly performed by domain experts resulting in significant cost and resource consumption. This paper presents a novel Convolutional Neural Network-based fraud detection approach that was developed, implemented, and evaluated on Medicare Part B records. The model aids manual fraud detection by classifying potential types of fraud, which can then be specifically analyzed. Our model is the first of its kind for Medicare data, yields an AUC of 0.7 for selected fraud types and provides an applicable method for medical claim fraud detection

    Show Me Your Claims and I'll Tell You Your Offenses: Machine Learning-Based Decision Support for Fraud Detection on Medical Claim Data

    Get PDF
    Health insurance claim fraud is a serious issue for the healthcare industry as it drives up costs and inefficiency. Therefore, claim fraud must be effectively detected to provide economical and high-quality healthcare. In practice, however, fraud detection is mainly performed by domain experts resulting in significant cost and resource consumption. This paper presents a novel Convolutional Neural Network-based fraud detection approach that was developed, implemented, and evaluated on Medicare Part B records. The model aids manual fraud detection by classifying potential types of fraud, which can then be specifically analyzed. Our model is the first of its kind for Medicare data, yields an AUC of 0.7 for selected fraud types and provides an applicable method for medical claim fraud detection

    Understanding, Analyzing and Predicting Online User Behavior

    Get PDF
    abstract: Due to the growing popularity of the Internet and smart mobile devices, massive data has been produced every day, particularly, more and more users’ online behavior and activities have been digitalized. Making a better usage of the massive data and a better understanding of the user behavior become at the very heart of industrial firms as well as the academia. However, due to the large size and unstructured format of user behavioral data, as well as the heterogeneous nature of individuals, it leveled up the difficulty to identify the SPECIFIC behavior that researchers are looking at, HOW to distinguish, and WHAT is resulting from the behavior. The difference in user behavior comes from different causes; in my dissertation, I am studying three circumstances of behavior that potentially bring in turbulent or detrimental effects, from precursory culture to preparatory strategy and delusory fraudulence. Meanwhile, I have access to the versatile toolkit of analysis: econometrics, quasi-experiment, together with machine learning techniques such as text mining, sentiment analysis, and predictive analytics etc. This study creatively leverages the power of the combined methodologies, and apply it beyond individual level data and network data. This dissertation makes a first step to discover user behavior in the newly boosting contexts. My study conceptualize theoretically and test empirically the effect of cultural values on rating and I find that an individualist cultural background are more likely to lead to deviation and more expression in review behaviors. I also find evidence of strategic behavior that users tend to leverage the reporting to increase the likelihood to maximize the benefits. Moreover, it proposes the features that moderate the preparation behavior. Finally, it introduces a unified and scalable framework for delusory behavior detection that meets the current needs to fully utilize multiple data sources.Dissertation/ThesisDoctoral Dissertation Business Administration 201

    Unsupervised learning for anomaly detection in Australian medical payment data

    Full text link
    Fraudulent or wasteful medical insurance claims made by health care providers are costly for insurers. Typically, OECD healthcare organisations lose 3-8% of total expenditure due to fraud. As Australia’s universal public health insurer, Medicare Australia, spends approximately A34billionperannumontheMedicareBenefitsSchedule(MBS)andPharmaceuticalBenefitsScheme,wastedspendingofA 34 billion per annum on the Medicare Benefits Schedule (MBS) and Pharmaceutical Benefits Scheme, wasted spending of A1–2.7 billion could be expected.However, fewer than 1% of claims to Medicare Australia are detected as fraudulent, below international benchmarks. Variation is common in medicine, and health conditions, along with their presentation and treatment, are heterogenous by nature. Increasing volumes of data and rapidly changing patterns bring challenges which require novel solutions. Machine learning and data mining are becoming commonplace in this field, but no gold standard is yet available. In this project, requirements are developed for real-world application to compliance analytics at the Australian Government Department of Health and Aged Care (DoH), covering: unsupervised learning; problem generalisation; human interpretability; context discovery; and cost prediction. Three novel methods are presented which rank providers by potentially recoverable costs. These methods used association analysis, topic modelling, and sequential pattern mining to provide interpretable, expert-editable models of typical provider claims. Anomalous providers are identified through comparison to the typical models, using metrics based on costs of excess or upgraded services. Domain knowledge is incorporated in a machine-friendly way in two of the methods through the use of the MBS as an ontology. Validation by subject-matter experts and comparison to existing techniques shows that the methods perform well. The methods are implemented in a software framework which enables rapid prototyping and quality assurance. The code is implemented at the DoH, and further applications as decision-support systems are in progress. The developed requirements will apply to future work in this fiel

    Essentials of Business Analytics

    Get PDF

    Private Graph Data Release: A Survey

    Full text link
    The application of graph analytics to various domains have yielded tremendous societal and economical benefits in recent years. However, the increasingly widespread adoption of graph analytics comes with a commensurate increase in the need to protect private information in graph databases, especially in light of the many privacy breaches in real-world graph data that was supposed to preserve sensitive information. This paper provides a comprehensive survey of private graph data release algorithms that seek to achieve the fine balance between privacy and utility, with a specific focus on provably private mechanisms. Many of these mechanisms fall under natural extensions of the Differential Privacy framework to graph data, but we also investigate more general privacy formulations like Pufferfish Privacy that can deal with the limitations of Differential Privacy. A wide-ranging survey of the applications of private graph data release mechanisms to social networks, finance, supply chain, health and energy is also provided. This survey paper and the taxonomy it provides should benefit practitioners and researchers alike in the increasingly important area of private graph data release and analysis

    A survey of big data and machine learning

    Get PDF
    This paper presents a detailed analysis of big data and machine learning (ML) in the electrical power and energy sector. Big data analytics for smart energy operations, applications, impact, measurement and control, and challenges are presented in this paper. Big data and machine learning approaches need to be applied after analyzing the power system problem carefully. Determining the match between the strengths of big data and machine learning for solving the power system problem is of utmost important. They can be of great help to plan and operate the traditional grid/smart grid (SG). The basics of big data and machine learning are described in detailed manner along with their applications in various fields such as electrical power and energy, health care and life sciences, government, telecommunications, web and digital media, retailers, finance, e-commerce and customer service, etc. Finally, the challenges and opportunities of big data and machine learning are presented in this paper

    MapReduce-iterative support vector machine classifier: novel fraud detection systems in healthcare insurance industry

    Get PDF
    Fraud in healthcare insurance claims is one of the significant research challenges that affect the growth of the healthcare services. The healthcare frauds are happening through subscribers, companies and the providers. The development of a decision support is to automate the claim data from service provider and to offset the patient’s challenges. In this paper, a novel hybridized big data and statistical machine learning technique, named MapReduce based iterative support vector machine (MR-ISVM) that provide a set of sophisticated steps for the automatic detection of fraudulent claims in the health insurance databases. The experimental results have proven that the MR-ISVM classifier outperforms better in classification and detection than other support vector machine (SVM) kernel classifiers. From the results, a positive impact seen in declining the computational time on processing the healthcare insurance claims without compromising the classification accuracy is achieved. The proposed MR-ISVM classifier achieves 87.73% accuracy than the linear (75.3%) and radial basis function (79.98%)

    The Role Artificial Intelligence in Modern Banking: An Exploration of AI-Driven Approaches for Enhanced Fraud Prevention, Risk Management, and Regulatory Compliance

    Get PDF
    Banking fraud prevention and risk management are paramount in the modern financial landscape, and the integration of Artificial Intelligence (AI) offers a promising avenue for advancements in these areas. This research delves into the multifaceted applications of AI in detecting, preventing, and managing fraudulent activities within the banking sector. Traditional fraud detection systems, predominantly rule-based, often fall short in real-time detection capabilities. In contrast, AI can swiftly analyze extensive transactional data, pinpointing anomalies and potentially fraudulent activities as they transpire. One of the standout methodologies includes the use of deep learning, particularly neural networks, which, when trained on historical fraud data, can discern intricate patterns and predict fraudulent transactions with remarkable precision.  Furthermore, the enhancement of Know Your Customer (KYC) processes is achievable through Natural Language Processing (NLP), where AI scrutinizes textual data from various sources, ensuring customer authenticity. Graph analytics offers a unique perspective by visualizing transactional relationships, potentially highlighting suspicious activities such as rapid fund transfers indicative of money laundering. Predictive analytics, transcending traditional credit scoring methods, incorporates a diverse data set, offering a more comprehensive insight into a customer's creditworthiness.  The research also underscores the importance of user-friendly interfaces like AI-powered chatbots for immediate reporting of suspicious activities and the integration of advanced biometric verifications, including facial and voice recognition. Geospatial analysis and behavioral biometrics further bolster security by analyzing transaction locations and user interaction patterns, respectively.  A significant advantage of AI lies in its adaptability. Self-learning systems ensure that as fraudulent tactics evolve, the AI mechanisms remain updated, maintaining their efficacy. This adaptability extends to phishing detection, IoT integration, and cross-channel analysis, providing a comprehensive defense against multifaceted fraudulent attempts. Moreover, AI's capability to simulate economic scenarios aids in proactive risk management, while its ability to ensure regulatory compliance automates and streamlines a traditionally cumbersome process
    • 

    corecore