10,320 research outputs found

    Canonical, Stable, General Mapping using Context Schemes

    Full text link
    Motivation: Sequence mapping is the cornerstone of modern genomics. However, most existing sequence mapping algorithms are insufficiently general. Results: We introduce context schemes: a method that allows the unambiguous recognition of a reference base in a query sequence by testing the query for substrings from an algorithmically defined set. Context schemes only map when there is a unique best mapping, and define this criterion uniformly for all reference bases. Mappings under context schemes can also be made stable, so that extension of the query string (e.g. by increasing read length) will not alter the mapping of previously mapped positions. Context schemes are general in several senses. They natively support the detection of arbitrary complex, novel rearrangements relative to the reference. They can scale over orders of magnitude in query sequence length. Finally, they are trivially extensible to more complex reference structures, such as graphs, that incorporate additional variation. We demonstrate empirically the existence of high performance context schemes, and present efficient context scheme mapping algorithms. Availability and Implementation: The software test framework created for this work is available from https://registry.hub.docker.com/u/adamnovak/sequence-graphs/. Contact: [email protected] Supplementary Information: Six supplementary figures and one supplementary section are available with the online version of this article.Comment: Submission for Bioinformatic

    Learning mutational graphs of individual tumour evolution from single-cell and multi-region sequencing data

    Full text link
    Background. A large number of algorithms is being developed to reconstruct evolutionary models of individual tumours from genome sequencing data. Most methods can analyze multiple samples collected either through bulk multi-region sequencing experiments or the sequencing of individual cancer cells. However, rarely the same method can support both data types. Results. We introduce TRaIT, a computational framework to infer mutational graphs that model the accumulation of multiple types of somatic alterations driving tumour evolution. Compared to other tools, TRaIT supports multi-region and single-cell sequencing data within the same statistical framework, and delivers expressive models that capture many complex evolutionary phenomena. TRaIT improves accuracy, robustness to data-specific errors and computational complexity compared to competing methods. Conclusions. We show that the application of TRaIT to single-cell and multi-region cancer datasets can produce accurate and reliable models of single-tumour evolution, quantify the extent of intra-tumour heterogeneity and generate new testable experimental hypotheses

    Joint assembly and genetic mapping of the Atlantic horseshoe crab genome reveals ancient whole genome duplication

    Get PDF
    Horseshoe crabs are marine arthropods with a fossil record extending back approximately 450 million years. They exhibit remarkable morphological stability over their long evolutionary history, retaining a number of ancestral arthropod traits, and are often cited as examples of "living fossils." As arthropods, they belong to the Ecdysozoa}, an ancient super-phylum whose sequenced genomes (including insects and nematodes) have thus far shown more divergence from the ancestral pattern of eumetazoan genome organization than cnidarians, deuterostomes, and lophotrochozoans. However, much of ecdysozoan diversity remains unrepresented in comparative genomic analyses. Here we use a new strategy of combined de novo assembly and genetic mapping to examine the chromosome-scale genome organization of the Atlantic horseshoe crab Limulus polyphemus. We constructed a genetic linkage map of this 2.7 Gbp genome by sequencing the nuclear DNA of 34 wild-collected, full-sibling embryos and their parents at a mean redundancy of 1.1x per sample. The map includes 84,307 sequence markers and 5,775 candidate conserved protein coding genes. Comparison to other metazoan genomes shows that the L. polyphemus genome preserves ancestral bilaterian linkage groups, and that a common ancestor of modern horseshoe crabs underwent one or more ancient whole genome duplications (WGDs) ~ 300 MYA, followed by extensive chromosome fusion

    BacillOndex: An Integrated Data Resource for Systems and Synthetic Biology

    Get PDF
    BacillOndex is an extension of the Ondex data integration system, providing a semantically annotated, integrated knowledge base for the model Gram-positive bacterium Bacillus subtilis. This application allows a user to mine a variety of B. subtilis data sources, and analyse the resulting integrated dataset, which contains data about genes, gene products and their interactions. The data can be analysed either manually, by browsing using Ondex, or computationally via a Web services interface. We describe the process of creating a BacillOndex instance, and describe the use of the system for the analysis of single nucleotide polymorphisms in B. subtilis Marburg. The Marburg strain is the progenitor of the widely-used laboratory strain B. subtilis 168. We identified 27 SNPs with predictable phenotypic effects, including genetic traits for known phenotypes. We conclude that BacillOndex is a valuable tool for the systems-level investigation of, and hypothesis generation about, this important biotechnology workhorse. Such understanding contributes to our ability to construct synthetic genetic circuits in this organism

    Multiple-Genome Annotation of Genome Fragments Using Hidden Markov Model Profiles

    Get PDF
    To learn more about microbes and overcome the limitations of standard cultured methods, microbial communities are being studied in an uncultured state. In such metagenomic studies, genetic material is sampled from the environment and sequenced using the whole-genome shotgun sequencing technique. This results in thousands of DNA fragments that need to be identified, so that the composition and inner workings of the microbial community can begin to be understood. Those fragments are then assembled into longer portions of sequences. However the high diversity present in an environment and the often low level of genome coverage achieved by the sequencing technology result in a low number of assembled fragments (contigs) and many unassembled fragments (singletons). The identification of contigs and singletons is usually done using BLAST, which finds sequences similar to the contigs and singletons in a database. An expert may then manually read these results and determine if the function and taxonomic origins of each fragment can be determined. In this report, an automated system called Anacle is developed to annotate, following a taxonomy, the unassembled fragments before the assembly process. Knowledge of what proteins can be found in each taxon is built into Anacle by clustering all known proteins of that taxon. The annotation performances from using Markov clustering (MCL) and Self- Organizing Maps (SOM) are investigated and compared. The resulting protein clusters can each be represented by a Hidden Markov Model (HMM) profile. Thus a “skeleton” of the taxon is generated with the profile HMMs providing a summary of the taxon’s genetic content. The experiments show that (1) MCL is superior to SOMs in annotation and in running time performance, (2) Anacle achieves good performance in taxonomic annotation, and (3) Anacle has the ability to generalize since it can correctly annotate fragments from genomes not present in the training dataset. These results indicate that Anacle can be very useful to metagenomics projects

    A Perspective on Future Research Directions in Information Theory

    Get PDF
    Information theory is rapidly approaching its 70th birthday. What are promising future directions for research in information theory? Where will information theory be having the most impact in 10-20 years? What new and emerging areas are ripe for the most impact, of the sort that information theory has had on the telecommunications industry over the last 60 years? How should the IEEE Information Theory Society promote high-risk new research directions and broaden the reach of information theory, while continuing to be true to its ideals and insisting on the intellectual rigor that makes its breakthroughs so powerful? These are some of the questions that an ad hoc committee (composed of the present authors) explored over the past two years. We have discussed and debated these questions, and solicited detailed inputs from experts in fields including genomics, biology, economics, and neuroscience. This report is the result of these discussions

    Computational pan-genomics: status, promises and challenges

    Get PDF
    International audienceMany disciplines, from human genetics and oncology to plant breeding, microbiology and virology, commonly face the challenge of analyzing rapidly increasing numbers of genomes. In case of Homo sapiens, the number of sequenced genomes will approach hundreds of thousands in the next few years. Simply scaling up established bioinformatics pipelines will not be sufficient for leveraging the full potential of such rich genomic data sets. Instead, novel, qualitatively different computational methods and paradigms are needed. We will witness the rapid extension of computational pan-genomics, a new sub-area of research in computational biology. In this article, we generalize existing definitions and understand a pan-genome as any collection of genomic sequences to be analyzed jointly or to be used as a reference. We examine already available approaches to construct and use pan-genomes, discuss the potential benefits of future technologies and methodologies and review open challenges from the vantage point of the above-mentioned biological disciplines. As a prominent example for a computational paradigm shift, we particularly highlight the transition from the representation of reference genomes as strings to representations as graphs. We outline how this and other challenges from different application domains translate into common computational problems, point out relevant bioinformatics techniques and identify open problems in computer science. With this review, we aim to increase awareness that a joint approach to computational pan-genomics can help address many of the problems currently faced in various domains

    Current challenges in de novo plant genome sequencing and assembly

    Get PDF
    ABSTRACT: Genome sequencing is now affordable, but assembling plant genomes de novo remains challenging. We assess the state of the art of assembly and review the best practices for the community
    • …
    corecore