552 research outputs found

    Process Algebras

    Get PDF
    Process Algebras are mathematically rigorous languages with well defined semantics that permit describing and verifying properties of concurrent communicating systems. They can be seen as models of processes, regarded as agents that act and interact continuously with other similar agents and with their common environment. The agents may be real-world objects (even people), or they may be artifacts, embodied perhaps in computer hardware or software systems. Many different approaches (operational, denotational, algebraic) are taken for describing the meaning of processes. However, the operational approach is the reference one. By relying on the so called Structural Operational Semantics (SOS), labelled transition systems are built and composed by using the different operators of the many different process algebras. Behavioral equivalences are used to abstract from unwanted details and identify those systems that react similarly to external experiments

    Enriched Lawvere Theories for Operational Semantics

    Full text link
    Enriched Lawvere theories are a generalization of Lawvere theories that allow us to describe the operational semantics of formal systems. For example, a graph enriched Lawvere theory describes structures that have a graph of operations of each arity, where the vertices are operations and the edges are rewrites between operations. Enriched theories can be used to equip systems with operational semantics, and maps between enriching categories can serve to translate between different forms of operational and denotational semantics. The Grothendieck construction lets us study all models of all enriched theories in all contexts in a single category. We illustrate these ideas with the SKI-combinator calculus, a variable-free version of the lambda calculus.Comment: In Proceedings ACT 2019, arXiv:2009.0633

    Relational Parametricity for Computational Effects

    Get PDF
    According to Strachey, a polymorphic program is parametric if it applies a uniform algorithm independently of the type instantiations at which it is applied. The notion of relational parametricity, introduced by Reynolds, is one possible mathematical formulation of this idea. Relational parametricity provides a powerful tool for establishing data abstraction properties, proving equivalences of datatypes, and establishing equalities of programs. Such properties have been well studied in a pure functional setting. Many programs, however, exhibit computational effects, and are not accounted for by the standard theory of relational parametricity. In this paper, we develop a foundational framework for extending the notion of relational parametricity to programming languages with effects.Comment: 31 pages, appears in Logical Methods in Computer Scienc

    Substitution, jumps, and algebraic effects

    Get PDF
    Contains fulltext : 129931.pdf (author's version ) (Open Access

    A Fully Abstract Denotational Model for Observational Congruence

    Get PDF
    Denotational Model for Observational Congruence Anna Ing olfsd ottir Andrea Schalk BRICS Report Series RS-95-40 ISSN 0909-0878 August 1995 Copyright c fl 1995, BRICS, Department of Computer Science University of Aarhus. All rights reserved. Reproduction of all or part of this work is permitted for educational or research use on condition that this copyright notice is included in any copy. See back inner page for a list of recent publications in the BRICS Report Series. Copies may be obtained by contacting: BRICS Department of Computer Science University of Aarhus Ny Munkegade, building 540 DK - 8000 Aarhus C Denmark Telephone:+45 8942 3360 Telefax: +45 8942 3255 Internet: [email protected] BRICS publications are in general accessible through WWW and anonymous FTP: http://www.brics.aau.dk/BRICS/ ftp ftp.brics.aau.dk (cd pub/BRICS) A Fully Abstract Denotational Model for Observational Congruence Anna Ing'olfsd'ottir BRICS Dep.of Maths and Computer Science ..
    corecore