439,636 research outputs found

    Graph theoretical approaches for the characterization of damage in hierarchical materials

    Full text link
    We discuss the relevance of methods of graph theory for the study of damage in simple model materials described by the random fuse model. While such methods are not commonly used when dealing with regular random lattices, which mimic disordered but statistically homogeneous materials, they become relevant in materials with microstructures that exhibit complex multi-scale patterns. We specifically address the case of hierarchical materials, whose failure, due to an uncommon fracture mode, is not well described in terms of either damage percolation or crack nucleation-and-growth. We show that in these systems, incipient failure is accompanied by an increase in eigenvector localization and a drop in topological dimension. We propose these two novel indicators as possible candidates to monitor a system in the approach to failure. As such, they provide alternatives to monitoring changes in the precursory avalanche activity, which is often invoked as a candidate for failure prediction in materials which exhibit critical-like behavior at failure, but may not work in the context of hierarchical materials which exhibit scale-free avalanche statistics even very far from the critical load.Comment: 12 pages, 6 figure

    A Study of Brain Networks Associated with Swallowing Using Graph-Theoretical Approaches

    Get PDF
    Functional connectivity between brain regions during swallowing tasks is still not well understood. Understanding these complex interactions is of great interest from both a scientific and a clinical perspective. In this study, functional magnetic resonance imaging (fMRI) was utilized to study brain functional networks during voluntary saliva swallowing in twenty-two adult healthy subjects (all females, 23.1±1.52 years of age). To construct these functional connections, we computed mean partial correlation matrices over ninety brain regions for each participant. Two regions were determined to be functionally connected if their correlation was above a certain threshold. These correlation matrices were then analyzed using graph-theoretical approaches. In particular, we considered several network measures for the whole brain and for swallowing-related brain regions. The results have shown that significant pairwise functional connections were, mostly, either local and intra-hemispheric or symmetrically inter-hemispheric. Furthermore, we showed that all human brain functional network, although varying in some degree, had typical small-world properties as compared to regular networks and random networks. These properties allow information transfer within the network at a relatively high efficiency. Swallowing-related brain regions also had higher values for some of the network measures in comparison to when these measures were calculated for the whole brain. The current results warrant further investigation of graph-theoretical approaches as a potential tool for understanding the neural basis of dysphagia. © 2013 Luan et al

    Extracting the Groupwise Core Structural Connectivity Network: Bridging Statistical and Graph-Theoretical Approaches

    Get PDF
    Finding the common structural brain connectivity network for a given population is an open problem, crucial for current neuro-science. Recent evidence suggests there's a tightly connected network shared between humans. Obtaining this network will, among many advantages , allow us to focus cognitive and clinical analyses on common connections, thus increasing their statistical power. In turn, knowledge about the common network will facilitate novel analyses to understand the structure-function relationship in the brain. In this work, we present a new algorithm for computing the core structural connectivity network of a subject sample combining graph theory and statistics. Our algorithm works in accordance with novel evidence on brain topology. We analyze the problem theoretically and prove its complexity. Using 309 subjects, we show its advantages when used as a feature selection for connectivity analysis on populations, outperforming the current approaches

    A PAC-Bayesian Analysis of Graph Clustering and Pairwise Clustering

    Full text link
    We formulate weighted graph clustering as a prediction problem: given a subset of edge weights we analyze the ability of graph clustering to predict the remaining edge weights. This formulation enables practical and theoretical comparison of different approaches to graph clustering as well as comparison of graph clustering with other possible ways to model the graph. We adapt the PAC-Bayesian analysis of co-clustering (Seldin and Tishby, 2008; Seldin, 2009) to derive a PAC-Bayesian generalization bound for graph clustering. The bound shows that graph clustering should optimize a trade-off between empirical data fit and the mutual information that clusters preserve on the graph nodes. A similar trade-off derived from information-theoretic considerations was already shown to produce state-of-the-art results in practice (Slonim et al., 2005; Yom-Tov and Slonim, 2009). This paper supports the empirical evidence by providing a better theoretical foundation, suggesting formal generalization guarantees, and offering a more accurate way to deal with finite sample issues. We derive a bound minimization algorithm and show that it provides good results in real-life problems and that the derived PAC-Bayesian bound is reasonably tight
    • …
    corecore