389 research outputs found

    Interactive Search and Exploration in Online Discussion Forums Using Multimodal Embeddings

    Get PDF
    In this paper we present a novel interactive multimodal learning system, which facilitates search and exploration in large networks of social multimedia users. It allows the analyst to identify and select users of interest, and to find similar users in an interactive learning setting. Our approach is based on novel multimodal representations of users, words and concepts, which we simultaneously learn by deploying a general-purpose neural embedding model. We show these representations to be useful not only for categorizing users, but also for automatically generating user and community profiles. Inspired by traditional summarization approaches, we create the profiles by selecting diverse and representative content from all available modalities, i.e. the text, image and user modality. The usefulness of the approach is evaluated using artificial actors, which simulate user behavior in a relevance feedback scenario. Multiple experiments were conducted in order to evaluate the quality of our multimodal representations, to compare different embedding strategies, and to determine the importance of different modalities. We demonstrate the capabilities of the proposed approach on two different multimedia collections originating from the violent online extremism forum Stormfront and the microblogging platform Twitter, which are particularly interesting due to the high semantic level of the discussions they feature

    Tracking the History and Evolution of Entities: Entity-centric Temporal Analysis of Large Social Media Archives

    Get PDF
    How did the popularity of the Greek Prime Minister evolve in 2015? How did the predominant sentiment about him vary during that period? Were there any controversial sub-periods? What other entities were related to him during these periods? To answer these questions, one needs to analyze archived documents and data about the query entities, such as old news articles or social media archives. In particular, user-generated content posted in social networks, like Twitter and Facebook, can be seen as a comprehensive documentation of our society, and thus meaningful analysis methods over such archived data are of immense value for sociologists, historians and other interested parties who want to study the history and evolution of entities and events. To this end, in this paper we propose an entity-centric approach to analyze social media archives and we define measures that allow studying how entities were reflected in social media in different time periods and under different aspects, like popularity, attitude, controversiality, and connectedness with other entities. A case study using a large Twitter archive of four years illustrates the insights that can be gained by such an entity-centric and multi-aspect analysis.Comment: This is a preprint of an article accepted for publication in the International Journal on Digital Libraries (2018

    #REVAL: a semantic evaluation framework for hashtag recommendation

    Full text link
    Automatic evaluation of hashtag recommendation models is a fundamental task in many online social network systems. In the traditional evaluation method, the recommended hashtags from an algorithm are firstly compared with the ground truth hashtags for exact correspondences. The number of exact matches is then used to calculate the hit rate, hit ratio, precision, recall, or F1-score. This way of evaluating hashtag similarities is inadequate as it ignores the semantic correlation between the recommended and ground truth hashtags. To tackle this problem, we propose a novel semantic evaluation framework for hashtag recommendation, called #REval. This framework includes an internal module referred to as BERTag, which automatically learns the hashtag embeddings. We investigate on how the #REval framework performs under different word embedding methods and different numbers of synonyms and hashtags in the recommendation using our proposed #REval-hit-ratio measure. Our experiments of the proposed framework on three large datasets show that #REval gave more meaningful hashtag synonyms for hashtag recommendation evaluation. Our analysis also highlights the sensitivity of the framework to the word embedding technique, with #REval based on BERTag more superior over #REval based on FastText and Word2Vec.Comment: 18 pages, 4 figure

    Language in Our Time: An Empirical Analysis of Hashtags

    Get PDF
    Hashtags in online social networks have gained tremendous popularity during the past five years. The resulting large quantity of data has provided a new lens into modern society. Previously, researchers mainly rely on data collected from Twitter to study either a certain type of hashtags or a certain property of hashtags. In this paper, we perform the first large-scale empirical analysis of hashtags shared on Instagram, the major platform for hashtag-sharing. We study hashtags from three different dimensions including the temporal-spatial dimension, the semantic dimension, and the social dimension. Extensive experiments performed on three large-scale datasets with more than 7 million hashtags in total provide a series of interesting observations. First, we show that the temporal patterns of hashtags can be categorized into four different clusters, and people tend to share fewer hashtags at certain places and more hashtags at others. Second, we observe that a non-negligible proportion of hashtags exhibit large semantic displacement. We demonstrate hashtags that are more uniformly shared among users, as quantified by the proposed hashtag entropy, are less prone to semantic displacement. In the end, we propose a bipartite graph embedding model to summarize users' hashtag profiles, and rely on these profiles to perform friendship prediction. Evaluation results show that our approach achieves an effective prediction with AUC (area under the ROC curve) above 0.8 which demonstrates the strong social signals possessed in hashtags.Comment: WWW 201
    corecore