6 research outputs found

    Aligning Experientially Grounded Ontologies using Language Games

    Get PDF

    Graph Structures for Knowledge Representation and Reasoning

    Get PDF
    This open access book constitutes the thoroughly refereed post-conference proceedings of the 6th International Workshop on Graph Structures for Knowledge Representation and Reasoning, GKR 2020, held virtually in September 2020, associated with ECAI 2020, the 24th European Conference on Artificial Intelligence. The 7 revised full papers presented together with 2 invited contributions were reviewed and selected from 9 submissions. The contributions address various issues for knowledge representation and reasoning and the common graph-theoretic background, which allows to bridge the gap between the different communities

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas

    Formal Methods of Argumentation as Models of Engineering Design Decisions and Processes

    Get PDF
    Complex engineering projects comprise many individual design decisions. As these decisions are made over the course of months, even years, and across different teams of engineers, it is common for them to be based on different, possibly conflicting assumptions. The longer these inconsistencies go undetected, the costlier they are to resolve. Therefore it is important to spot them as early as possible. There is currently no software aimed explicitly at detecting inconsistencies in interrelated design decisions. This thesis is a step towards the development of such tools. We use formal methods of argumentation, a branch of artificial intelligence, as the foundation of a logical model of design decisions capable of handling inconsistency. It has three parts. First, argumentation is used to model the pros and cons of individual decisions and to reason about the possible worlds in which these arguments are justified. In the second part we study sequences of interrelated decisions. We identify cases where the arguments in one decision invalidate the justification for another decision, and develop a measure of the impact that choosing a specific option has on the consistency of the overall design. The final part of the thesis is concerned with non-deductive arguments, which are used in design debates, for example to draw analogies between past and current problems. Our model integrates deductive and non-deductive arguments side-by-side. This work is supported by our collaboration with the engineering department of Queen’s University Belfast and an industrial partner. The thesis contains two case studies of realistic problems and parts of it were implemented as software prototypes. We also give theoretical results demonstrating the internal consistency of our model
    corecore