7,580 research outputs found

    Label Efficient Learning by Exploiting Multi-class Output Codes

    Full text link
    We present a new perspective on the popular multi-class algorithmic techniques of one-vs-all and error correcting output codes. Rather than studying the behavior of these techniques for supervised learning, we establish a connection between the success of these methods and the existence of label-efficient learning procedures. We show that in both the realizable and agnostic cases, if output codes are successful at learning from labeled data, they implicitly assume structure on how the classes are related. By making that structure explicit, we design learning algorithms to recover the classes with low label complexity. We provide results for the commonly studied cases of one-vs-all learning and when the codewords of the classes are well separated. We additionally consider the more challenging case where the codewords are not well separated, but satisfy a boundary features condition that captures the natural intuition that every bit of the codewords should be significant

    Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis

    Full text link
    Machine learning (ML) algorithms have made a tremendous impact in the field of medical imaging. While medical imaging datasets have been growing in size, a challenge for supervised ML algorithms that is frequently mentioned is the lack of annotated data. As a result, various methods which can learn with less/other types of supervision, have been proposed. We review semi-supervised, multiple instance, and transfer learning in medical imaging, both in diagnosis/detection or segmentation tasks. We also discuss connections between these learning scenarios, and opportunities for future research.Comment: Submitted to Medical Image Analysi

    Text Generation from Knowledge Graphs with Graph Transformers

    Full text link
    Generating texts which express complex ideas spanning multiple sentences requires a structured representation of their content (document plan), but these representations are prohibitively expensive to manually produce. In this work, we address the problem of generating coherent multi-sentence texts from the output of an information extraction system, and in particular a knowledge graph. Graphical knowledge representations are ubiquitous in computing, but pose a significant challenge for text generation techniques due to their non-hierarchical nature, collapsing of long-distance dependencies, and structural variety. We introduce a novel graph transforming encoder which can leverage the relational structure of such knowledge graphs without imposing linearization or hierarchical constraints. Incorporated into an encoder-decoder setup, we provide an end-to-end trainable system for graph-to-text generation that we apply to the domain of scientific text. Automatic and human evaluations show that our technique produces more informative texts which exhibit better document structure than competitive encoder-decoder methods.Comment: Accepted as a long paper in NAACL 201

    Joint Max Margin and Semantic Features for Continuous Event Detection in Complex Scenes

    Full text link
    In this paper the problem of complex event detection in the continuous domain (i.e. events with unknown starting and ending locations) is addressed. Existing event detection methods are limited to features that are extracted from the local spatial or spatio-temporal patches from the videos. However, this makes the model vulnerable to the events with similar concepts e.g. "Open drawer" and "Open cupboard". In this work, in order to address the aforementioned limitations we present a novel model based on the combination of semantic and temporal features extracted from video frames. We train a max-margin classifier on top of the extracted features in an adaptive framework that is able to detect the events with unknown starting and ending locations. Our model is based on the Bidirectional Region Neural Network and large margin Structural Output SVM. The generality of our model allows it to be simply applied to different labeled and unlabeled datasets. We finally test our algorithm on three challenging datasets, "UCF 101-Action Recognition", "MPII Cooking Activities" and "Hollywood", and we report state-of-the-art performance.Comment: submit to journal of Computer Vision and Image Understandin

    Context-Aware Query Selection for Active Learning in Event Recognition

    Full text link
    Activity recognition is a challenging problem with many practical applications. In addition to the visual features, recent approaches have benefited from the use of context, e.g., inter-relationships among the activities and objects. However, these approaches require data to be labeled, entirely available beforehand, and not designed to be updated continuously, which make them unsuitable for surveillance applications. In contrast, we propose a continuous-learning framework for context-aware activity recognition from unlabeled video, which has two distinct advantages over existing methods. First, it employs a novel active-learning technique that not only exploits the informativeness of the individual activities but also utilizes their contextual information during query selection; this leads to significant reduction in expensive manual annotation effort. Second, the learned models can be adapted online as more data is available. We formulate a conditional random field model that encodes the context and devise an information-theoretic approach that utilizes entropy and mutual information of the nodes to compute the set of most informative queries, which are labeled by a human. These labels are combined with graphical inference techniques for incremental updates. We provide a theoretical formulation of the active learning framework with an analytic solution. Experiments on six challenging datasets demonstrate that our framework achieves superior performance with significantly less manual labeling.Comment: To appear in Transactions of Pattern Pattern Analysis and Machine Intelligence (T-PAMI

    Robust Visual Knowledge Transfer via EDA

    Full text link
    We address the problem of visual knowledge adaptation by leveraging labeled patterns from source domain and a very limited number of labeled instances in target domain to learn a robust classifier for visual categorization. This paper proposes a new extreme learning machine based cross-domain network learning framework, that is called Extreme Learning Machine (ELM) based Domain Adaptation (EDA). It allows us to learn a category transformation and an ELM classifier with random projection by minimizing the l_(2,1)-norm of the network output weights and the learning error simultaneously. The unlabeled target data, as useful knowledge, is also integrated as a fidelity term to guarantee the stability during cross domain learning. It minimizes the matching error between the learned classifier and a base classifier, such that many existing classifiers can be readily incorporated as base classifiers. The network output weights cannot only be analytically determined, but also transferrable. Additionally, a manifold regularization with Laplacian graph is incorporated, such that it is beneficial to semi-supervised learning. Extensively, we also propose a model of multiple views, referred as MvEDA. Experiments on benchmark visual datasets for video event recognition and object recognition, demonstrate that our EDA methods outperform existing cross-domain learning methods.Comment: This paper has been accepted for publication in IEEE Transactions on Image Processin

    Modeling Uncertainty by Learning a Hierarchy of Deep Neural Connections

    Full text link
    Modeling uncertainty in deep neural networks, despite recent important advances, is still an open problem. Bayesian neural networks are a powerful solution, where the prior over network weights is a design choice, often a normal distribution or other distribution encouraging sparsity. However, this prior is agnostic to the generative process of the input data, which might lead to unwarranted generalization for out-of-distribution tested data. We suggest the presence of a confounder for the relation between the input data and the discriminative function given the target label. We propose an approach for modeling this confounder by sharing neural connectivity patterns between the generative and discriminative networks. This approach leads to a new deep architecture, where networks are sampled from the posterior of local causal structures, and coupled into a compact hierarchy. We demonstrate that sampling networks from this hierarchy, proportionally to their posterior, is efficient and enables estimating various types of uncertainties. Empirical evaluations of our method demonstrate significant improvement compared to state-of-the-art calibration and out-of-distribution detection methods

    Machine Learning with World Knowledge: The Position and Survey

    Full text link
    Machine learning has become pervasive in multiple domains, impacting a wide variety of applications, such as knowledge discovery and data mining, natural language processing, information retrieval, computer vision, social and health informatics, ubiquitous computing, etc. Two essential problems of machine learning are how to generate features and how to acquire labels for machines to learn. Particularly, labeling large amount of data for each domain-specific problem can be very time consuming and costly. It has become a key obstacle in making learning protocols realistic in applications. In this paper, we will discuss how to use the existing general-purpose world knowledge to enhance machine learning processes, by enriching the features or reducing the labeling work. We start from the comparison of world knowledge with domain-specific knowledge, and then introduce three key problems in using world knowledge in learning processes, i.e., explicit and implicit feature representation, inference for knowledge linking and disambiguation, and learning with direct or indirect supervision. Finally we discuss the future directions of this research topic

    Snorkel DryBell: A Case Study in Deploying Weak Supervision at Industrial Scale

    Full text link
    Labeling training data is one of the most costly bottlenecks in developing machine learning-based applications. We present a first-of-its-kind study showing how existing knowledge resources from across an organization can be used as weak supervision in order to bring development time and cost down by an order of magnitude, and introduce Snorkel DryBell, a new weak supervision management system for this setting. Snorkel DryBell builds on the Snorkel framework, extending it in three critical aspects: flexible, template-based ingestion of diverse organizational knowledge, cross-feature production serving, and scalable, sampling-free execution. On three classification tasks at Google, we find that Snorkel DryBell creates classifiers of comparable quality to ones trained with tens of thousands of hand-labeled examples, converts non-servable organizational resources to servable models for an average 52% performance improvement, and executes over millions of data points in tens of minutes

    Active Learning for Network Intrusion Detection

    Full text link
    Network operators are generally aware of common attack vectors that they defend against. For most networks the vast majority of traffic is legitimate. However new attack vectors are continually designed and attempted by bad actors which bypass detection and go unnoticed due to low volume. One strategy for finding such activity is to look for anomalous behavior. Investigating anomalous behavior requires significant time and resources. Collecting a large number of labeled examples for training supervised models is both prohibitively expensive and subject to obsoletion as new attacks surface. A purely unsupervised methodology is ideal; however, research has shown that even a very small number of labeled examples can significantly improve the quality of anomaly detection. A methodology that minimizes the number of required labels while maximizing the quality of detection is desirable. False positives in this context result in wasted effort or blockage of legitimate traffic and false negatives translate to undetected attacks. We propose a general active learning framework and experiment with different choices of learners and sampling strategies
    • …
    corecore