6,025 research outputs found

    Pivoting makes the ZX-calculus complete for real stabilizers

    Get PDF
    We show that pivoting property of graph states cannot be derived from the axioms of the ZX-calculus, and that pivoting does not imply local complementation of graph states. Therefore the ZX-calculus augmented with pivoting is strictly weaker than the calculus augmented with the Euler decomposition of the Hadamard gate. We derive an angle-free version of the ZX-calculus and show that it is complete for real stabilizer quantum mechanics.Comment: In Proceedings QPL 2013, arXiv:1412.791

    The ZX-calculus is incomplete for quantum mechanics

    Get PDF
    We prove that the ZX-calculus is incomplete for quantum mechanics. We suggest the addition of a new 'color-swap' rule, of which currently no analytical formulation is known and which we suspect may be necessary, but not sufficient to make the ZX-calculus complete.Comment: In Proceedings QPL 2014, arXiv:1412.810

    Towards a Minimal Stabilizer ZX-calculus

    Full text link
    The stabilizer ZX-calculus is a rigorous graphical language for reasoning about quantum mechanics. The language is sound and complete: one can transform a stabilizer ZX-diagram into another one using the graphical rewrite rules if and only if these two diagrams represent the same quantum evolution or quantum state. We previously showed that the stabilizer ZX-calculus can be simplified by reducing the number of rewrite rules, without losing the property of completeness [Backens, Perdrix & Wang, EPTCS 236:1--20, 2017]. Here, we show that most of the remaining rules of the language are indeed necessary. We do however leave as an open question the necessity of two rules. These include, surprisingly, the bialgebra rule, which is an axiomatisation of complementarity, the cornerstone of the ZX-calculus. Furthermore, we show that a weaker ambient category -- a braided autonomous category instead of the usual compact closed category -- is sufficient to recover the meta rule 'only connectivity matters', even without assuming any symmetries of the generators.Comment: 29 pages, minor updates for v

    Qutrit Dichromatic Calculus and Its Universality

    Full text link
    We introduce a dichromatic calculus (RG) for qutrit systems. We show that the decomposition of the qutrit Hadamard gate is non-unique and not derivable from the dichromatic calculus. As an application of the dichromatic calculus, we depict a quantum algorithm with a single qutrit. Since it is not easy to decompose an arbitrary d by d unitary matrix into Z and X phase gates when d > 2, the proof of the universality of qudit ZX calculus for quantum mechanics is far from trivial. We construct a counterexample to Ranchin's universality proof, and give another proof by Lie theory that the qudit ZX calculus contains all single qudit unitary transformations, which implies that qudit ZX calculus, with qutrit dichromatic calculus as a special case, is universal for quantum mechanics.Comment: In Proceedings QPL 2014, arXiv:1412.810

    A complete graphical calculus for Spekkens' toy bit theory

    Get PDF
    While quantum theory cannot be described by a local hidden variable model, it is nevertheless possible to construct such models that exhibit features commonly associated with quantum mechanics. These models are also used to explore the question of {\psi}-ontic versus {\psi}-epistemic theories for quantum mechanics. Spekkens' toy theory is one such model. It arises from classical probabilistic mechanics via a limit on the knowledge an observer may have about the state of a system. The toy theory for the simplest possible underlying system closely resembles stabilizer quantum mechanics, a fragment of quantum theory which is efficiently classically simulable but also non-local. Further analysis of the similarities and differences between those two theories can thus yield new insights into what distinguishes quantum theory from classical theories, and {\psi}-ontic from {\psi}-epistemic theories. In this paper, we develop a graphical language for Spekkens' toy theory. Graphical languages offer intuitive and rigorous formalisms for the analysis of quantum mechanics and similar theories. To compare quantum mechanics and a toy model, it is useful to have similar formalisms for both. We show that our language fully describes Spekkens' toy theory and in particular, that it is complete: meaning any equality that can be derived using other formalisms can also be derived entirely graphically. Our language is inspired by a similar graphical language for quantum mechanics called the ZX-calculus. Thus Spekkens' toy bit theory and stabilizer quantum mechanics can be analysed and compared using analogous graphical formalisms.Comment: Major revisions for v2. 22+7 page

    The ZX-calculus is complete for stabilizer quantum mechanics

    Get PDF
    The ZX-calculus is a graphical calculus for reasoning about quantum systems and processes. It is known to be universal for pure state qubit quantum mechanics, meaning any pure state, unitary operation and post-selected pure projective measurement can be expressed in the ZX-calculus. The calculus is also sound, i.e. any equality that can be derived graphically can also be derived using matrix mechanics. Here, we show that the ZX-calculus is complete for pure qubit stabilizer quantum mechanics, meaning any equality that can be derived using matrices can also be derived pictorially. The proof relies on bringing diagrams into a normal form based on graph states and local Clifford operations.Comment: 26 page
    • …
    corecore