251 research outputs found

    ๋ณ‘๋ ฌํ™” ์šฉ์ดํ•œ ํ†ต๊ณ„๊ณ„์‚ฐ ๋ฐฉ๋ฒ•๋ก ๊ณผ ํ˜„๋Œ€ ๊ณ ์„ฑ๋Šฅ ์ปดํ“จํŒ… ํ™˜๊ฒฝ์—์˜ ์ ์šฉ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ†ต๊ณ„ํ•™๊ณผ, 2020. 8. ์›์ค‘ํ˜ธ.Technological advances in the past decade, hardware and software alike, have made access to high-performance computing (HPC) easier than ever. In this dissertation, easily-parallelizable, inversion-free, and variable-separated algorithms and their implementation in statistical computing are discussed. The first part considers statistical estimation problems under structured sparsity posed as minimization of a sum of two or three convex functions, one of which is a composition of non-smooth and linear functions. Examples include graph-guided sparse fused lasso and overlapping group lasso. Two classes of inversion-free primal-dual algorithms are considered and unified from a perspective of monotone operator theory. From this unification, a continuum of preconditioned forward-backward operator splitting algorithms amenable to parallel and distributed computing is proposed. The unification is further exploited to introduce a continuum of accelerated algorithms on which the theoretically optimal asymptotic rate of convergence is obtained. For the second part, easy-to-use distributed matrix data structures in PyTorch and Julia are presented. They enable users to write code once and run it anywhere from a laptop to a workstation with multiple graphics processing units (GPUs) or a supercomputer in a cloud. With these data structures, various parallelizable statistical applications, including nonnegative matrix factorization, positron emission tomography, multidimensional scaling, and โ„“1-regularized Cox regression, are demonstrated. The examples scale up to an 8-GPU workstation and a 720-CPU-core cluster in a cloud. As a case in point, the onset of type-2 diabetes from the UK Biobank with 400,000 subjects and about 500,000 single nucleotide polymorphisms is analyzed using the HPC โ„“1-regularized Cox regression. Fitting a half-million variate model took about 50 minutes, reconfirming known associations. To my knowledge, the feasibility of a joint genome-wide association analysis of survival outcomes at this scale is first demonstrated.์ง€๋‚œ 10๋…„๊ฐ„์˜ ํ•˜๋“œ์›จ์–ด์™€ ์†Œํ”„ํŠธ์›จ์–ด์˜ ๊ธฐ์ˆ ์ ์ธ ๋ฐœ์ „์€ ๊ณ ์„ฑ๋Šฅ ์ปดํ“จํŒ…์˜ ์ ‘๊ทผ์žฅ๋ฒฝ์„ ๊ทธ ์–ด๋Š ๋•Œ๋ณด๋‹ค ๋‚ฎ์ถ”์—ˆ๋‹ค. ์ด ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋ณ‘๋ ฌํ™” ์šฉ์ดํ•˜๊ณ  ์—ญํ–‰๋ ฌ ์—ฐ์‚ฐ์ด ์—†๋Š” ๋ณ€์ˆ˜ ๋ถ„๋ฆฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๊ทธ ํ†ต๊ณ„๊ณ„์‚ฐ์—์„œ์˜ ๊ตฌํ˜„์„ ๋…ผ์˜ํ•œ๋‹ค. ์ฒซ ๋ถ€๋ถ„์€ ๋ณผ๋ก ํ•จ์ˆ˜ ๋‘ ๊ฐœ ๋˜๋Š” ์„ธ ๊ฐœ์˜ ํ•ฉ์œผ๋กœ ๋‚˜ํƒ€๋‚˜๋Š” ๊ตฌ์กฐํ™”๋œ ํฌ์†Œ ํ†ต๊ณ„ ์ถ”์ • ๋ฌธ์ œ์— ๋Œ€ํ•ด ๋‹ค๋ฃฌ๋‹ค. ์ด ๋•Œ ํ•จ์ˆ˜๋“ค ์ค‘ ํ•˜๋‚˜๋Š” ๋น„ํ‰ํ™œ ํ•จ์ˆ˜์™€ ์„ ํ˜• ํ•จ์ˆ˜์˜ ํ•ฉ์„ฑ์œผ๋กœ ๋‚˜ํƒ€๋‚œ๋‹ค. ๊ทธ ์˜ˆ์‹œ๋กœ๋Š” ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๋ฅผ ํ†ตํ•ด ์œ ๋„๋˜๋Š” ํฌ์†Œ ์œตํ•ฉ Lasso ๋ฌธ์ œ์™€ ํ•œ ๋ณ€์ˆ˜๊ฐ€ ์—ฌ๋Ÿฌ ๊ทธ๋ฃน์— ์†ํ•  ์ˆ˜ ์žˆ๋Š” ๊ทธ๋ฃน Lasso ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ์ด๋ฅผ ํ’€๊ธฐ ์œ„ํ•ด ์—ญํ–‰๋ ฌ ์—ฐ์‚ฐ์ด ์—†๋Š” ๋‘ ์ข…๋ฅ˜์˜ ์›์‹œ-์Œ๋Œ€ (primal-dual) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๋‹จ์กฐ ์—ฐ์‚ฐ์ž ์ด๋ก  ๊ด€์ ์—์„œ ํ†ตํ•ฉํ•˜๋ฉฐ ์ด๋ฅผ ํ†ตํ•ด ๋ณ‘๋ ฌํ™” ์šฉ์ดํ•œ precondition๋œ ์ „๋ฐฉ-ํ›„๋ฐฉ ์—ฐ์‚ฐ์ž ๋ถ„ํ•  ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ง‘ํ•ฉ์„ ์ œ์•ˆํ•œ๋‹ค. ์ด ํ†ตํ•ฉ์€ ์ ๊ทผ์ ์œผ๋กœ ์ตœ์  ์ˆ˜๋ ด๋ฅ ์„ ๊ฐ–๋Š” ๊ฐ€์† ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ง‘ํ•ฉ์„ ๊ตฌ์„ฑํ•˜๋Š” ๋ฐ ํ™œ์šฉ๋œ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋ถ€๋ถ„์—์„œ๋Š” PyTorch์™€ Julia๋ฅผ ํ†ตํ•ด ์‚ฌ์šฉํ•˜๊ธฐ ์‰ฌ์šด ๋ถ„์‚ฐ ํ–‰๋ ฌ ์ž๋ฃŒ ๊ตฌ์กฐ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ด ๊ตฌ์กฐ๋Š” ์‚ฌ์šฉ์ž๋“ค์ด ์ฝ”๋“œ๋ฅผ ํ•œ ๋ฒˆ ์ž‘์„ฑํ•˜๋ฉด ์ด๊ฒƒ์„ ๋…ธํŠธ๋ถ ํ•œ ๋Œ€์—์„œ๋ถ€ํ„ฐ ์—ฌ๋Ÿฌ ๋Œ€์˜ ๊ทธ๋ž˜ํ”ฝ ์ฒ˜๋ฆฌ ์žฅ์น˜ (GPU)๋ฅผ ๊ฐ€์ง„ ์›Œํฌ์Šคํ…Œ์ด์…˜, ๋˜๋Š” ํด๋ผ์šฐ๋“œ ์ƒ์— ์žˆ๋Š” ์Šˆํผ์ปดํ“จํ„ฐ๊นŒ์ง€ ๋‹ค์–‘ํ•œ ์Šค์ผ€์ผ์—์„œ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด ์ค€๋‹ค. ์•„์šธ๋Ÿฌ, ์ด ์ž๋ฃŒ ๊ตฌ์กฐ๋ฅผ ๋น„์Œ ํ–‰๋ ฌ ๋ถ„ํ•ด, ์–‘์ „์ž ๋‹จ์ธต ์ดฌ์˜, ๋‹ค์ฐจ์› ์ฒ™ ๋„๋ฒ•, โ„“1-๋ฒŒ์ ํ™” Cox ํšŒ๊ท€ ๋ถ„์„ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ณ‘๋ ฌํ™” ๊ฐ€๋Šฅํ•œ ํ†ต๊ณ„์  ๋ฌธ์ œ์— ์ ์šฉํ•œ๋‹ค. ์ด ์˜ˆ์‹œ๋“ค์€ 8๋Œ€์˜ GPU๊ฐ€ ์žˆ๋Š” ์›Œํฌ์Šคํ…Œ์ด์…˜๊ณผ 720๊ฐœ์˜ ์ฝ”์–ด๊ฐ€ ์žˆ๋Š” ํด๋ผ์šฐ๋“œ ์ƒ์˜ ๊ฐ€์ƒ ํด๋Ÿฌ์Šคํ„ฐ์—์„œ ํ™•์žฅ ๊ฐ€๋Šฅํ–ˆ๋‹ค. ํ•œ ์‚ฌ๋ก€๋กœ 400,000๋ช…์˜ ๋Œ€์ƒ๊ณผ 500,000๊ฐœ์˜ ๋‹จ์ผ ์—ผ๊ธฐ ๋‹คํ˜•์„ฑ ์ •๋ณด๊ฐ€ ์žˆ๋Š” UK Biobank ์ž๋ฃŒ์—์„œ์˜ ์ œ2ํ˜• ๋‹น๋‡จ๋ณ‘ (T2D) ๋ฐœ๋ณ‘ ๋‚˜์ด๋ฅผ โ„“1-๋ฒŒ์ ํ™” Cox ํšŒ๊ท€ ๋ชจํ˜•์„ ํ†ตํ•ด ๋ถ„์„ํ–ˆ๋‹ค. 500,000๊ฐœ์˜ ๋ณ€์ˆ˜๊ฐ€ ์žˆ๋Š” ๋ชจํ˜•์„ ์ ํ•ฉ์‹œํ‚ค๋Š” ๋ฐ 50๋ถ„ ๊ฐ€๋Ÿ‰์˜ ์‹œ๊ฐ„์ด ๊ฑธ๋ ธ์œผ๋ฉฐ ์•Œ๋ ค์ง„ T2D ๊ด€๋ จ ๋‹คํ˜•์„ฑ๋“ค์„ ์žฌํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ทœ๋ชจ์˜ ์ „์œ ์ „์ฒด ๊ฒฐํ•ฉ ์ƒ์กด ๋ถ„์„์€ ์ตœ์ดˆ๋กœ ์‹œ๋„๋œ ๊ฒƒ์ด๋‹ค.Chapter1Prologue 1 1.1 Introduction 1 1.2 Accessible High-Performance Computing Systems 4 1.2.1 Preliminaries 4 1.2.2 Multiple CPU nodes: clusters, supercomputers, and clouds 7 1.2.3 Multi-GPU node 9 1.3 Highly Parallelizable Algorithms 12 1.3.1 MM algorithms 12 1.3.2 Proximal gradient descent 14 1.3.3 Proximal distance algorithm 16 1.3.4 Primal-dual methods 17 Chapter 2 Easily Parallelizable and Distributable Class of Algorithms for Structured Sparsity, with Optimal Acceleration 20 2.1 Introduction 20 2.2 Unification of Algorithms LV and CV (g โ‰ก 0) 30 2.2.1 Relation between Algorithms LV and CV 30 2.2.2 Unified algorithm class 34 2.2.3 Convergence analysis 35 2.3 Optimal acceleration 39 2.3.1 Algorithms 40 2.3.2 Convergence analysis 41 2.4 Stochastic optimal acceleration 45 2.4.1 Algorithm 45 2.4.2 Convergence analysis 47 2.5 Numerical experiments 50 2.5.1 Model problems 50 2.5.2 Convergence behavior 52 2.5.3 Scalability 62 2.6 Discussion 63 Chapter 3 Towards Unified Programming for High-Performance Statistical Computing Environments 66 3.1 Introduction 66 3.2 Related Software 69 3.2.1 Message-passing interface and distributed array interfaces 69 3.2.2 Unified array interfaces for CPU and GPU 69 3.3 Easy-to-use Software Libraries for HPC 70 3.3.1 Deep learning libraries and HPC 70 3.3.2 Case study: PyTorch versus TensorFlow 73 3.3.3 A brief introduction to PyTorch 76 3.3.4 A brief introduction to Julia 80 3.3.5 Methods and multiple dispatch 80 3.3.6 Multidimensional arrays 82 3.3.7 Matrix multiplication 83 3.3.8 Dot syntax for vectorization 86 3.4 Distributed matrix data structure 87 3.4.1 Distributed matrices in PyTorch: distmat 87 3.4.2 Distributed arrays in Julia: MPIArray 90 3.5 Examples 98 3.5.1 Nonnegative matrix factorization 100 3.5.2 Positron emission tomography 109 3.5.3 Multidimensional scaling 113 3.5.4 L1-regularized Cox regression 117 3.5.5 Genome-wide survival analysis of the UK Biobank dataset 121 3.6 Discussion 126 Chapter 4 Conclusion 131 Appendix A Monotone Operator Theory 134 Appendix B Proofs for Chapter II 139 B.1 Preconditioned forward-backward splitting 139 B.2 Optimal acceleration 147 B.3 Optimal stochastic acceleration 158 Appendix C AWS EC2 and ParallelCluster 168 C.1 Overview 168 C.2 Glossary 169 C.3 Prerequisites 172 C.4 Installation 173 C.5 Configuration 173 C.6 Creating, accessing, and destroying the cluster 178 C.7 Installation of libraries 178 C.8 Running a job 179 C.9 Miscellaneous 180 Appendix D Code for memory-efficient L1-regularized Cox proportional hazards model 182 Appendix E Details of SNPs selected in L1-regularized Cox regression 184 Bibliography 188 ๊ตญ๋ฌธ์ดˆ๋ก 212Docto

    From representation learning to thematic classification - Application to hierarchical analysis of hyperspectral images

    Get PDF
    Numerous frameworks have been developed in order to analyze the increasing amount of available image data. Among those methods, supervised classification has received considerable attention leading to the development of state-of-the-art classification methods. These methods aim at inferring the class of each observation given a specific class nomenclature by exploiting a set of labeled observations. Thanks to extensive research efforts of the community, classification methods have become very efficient. Nevertheless, the results of a classification remains a highlevel interpretation of the scene since it only gives a single class to summarize all information in a given pixel. Contrary to classification methods, representation learning methods are model-based approaches designed especially to handle high-dimensional data and extract meaningful latent variables. By using physic-based models, these methods allow the user to extract very meaningful variables and get a very detailed interpretation of the considered image. The main objective of this thesis is to develop a unified framework for classification and representation learning. These two methods provide complementary approaches allowing to address the problem using a hierarchical modeling approach. The representation learning approach is used to build a low-level model of the data whereas classification is used to incorporate supervised information and may be seen as a high-level interpretation of the data. Two different paradigms, namely Bayesian models and optimization approaches, are explored to set up this hierarchical model. The proposed models are then tested in the specific context of hyperspectral imaging where the representation learning task is specified as a spectral unmixing proble

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    Motion capture data processing, retrieval and recognition.

    Get PDF
    Character animation plays an essential role in the area of featured film and computer games. Manually creating character animation by animators is both tedious and inefficient, where motion capture techniques (MoCap) have been developed and become the most popular method for creating realistic character animation products. Commercial MoCap systems are expensive and the capturing process itself usually requires an indoor studio environment. Procedural animation creation is often lacking extensive user control during the generation progress. Therefore, efficiently and effectively reusing MoCap data can brings significant benefits, which has motivated wider research in terms of machine learning based MoCap data processing. A typical work flow of MoCap data reusing can be divided into 3 stages: data capture, data management and data reusing. There are still many challenges at each stage. For instance, the data capture and management often suffer from data quality problems. The efficient and effective retrieval method is also demanding due to the large amount of data being used. In addition, classification and understanding of actions are the fundamental basis of data reusing. This thesis proposes to use machine learning on MoCap data for reusing purposes, where a frame work of motion capture data processing is designed. The modular design of this framework enables motion data refinement, retrieval and recognition. The first part of this thesis introduces various methods used in existing motion capture processing approaches in literature and a brief introduction of relevant machine learning methods used in this framework. In general, the frameworks related to refinement, retrieval, recognition are discussed. A motion refinement algorithm based on dictionary learning will then be presented, where kinematical structural and temporal information are exploited. The designed optimization method and data preprocessing technique can ensure a smooth property for the recovered result. After that, a motion refinement algorithm based on matrix completion is presented, where the low-rank property and spatio-temporal information is exploited. Such model does not require preparing data for training. The designed optimization method outperforms existing approaches in regard to both effectiveness and efficiency. A motion retrieval method based on multi-view feature selection is also proposed, where the intrinsic relations between visual words in each motion feature subspace are discovered as a means of improving the retrieval performance. A provisional trace-ratio objective function and an iterative optimization method are also included. A non-negative matrix factorization based motion data clustering method is proposed for recognition purposes, which aims to deal with large scale unsupervised/semi-supervised problems. In addition, deep learning models are used for motion data recognition, e.g. 2D gait recognition and 3D MoCap recognition. To sum up, the research on motion data refinement, retrieval and recognition are presented in this thesis with an aim to tackle the major challenges in motion reusing. The proposed motion refinement methods aim to provide high quality clean motion data for downstream applications. The designed multi-view feature selection algorithm aims to improve the motion retrieval performance. The proposed motion recognition methods are equally essential for motion understanding. A collection of publications by the author of this thesis are noted in publications section
    • โ€ฆ
    corecore