6,063 research outputs found

    Graph Similarity and Approximate Isomorphism

    Get PDF
    The graph similarity problem, also known as approximate graph isomorphism or graph matching problem, has been extensively studied in the machine learning community, but has not received much attention in the algorithms community: Given two graphs G,H of the same order n with adjacency matrices A_G,A_H, a well-studied measure of similarity is the Frobenius distance dist(G,H):=min_{pi}|A_G^{pi}-A_H|_F, where pi ranges over all permutations of the vertex set of G, where A_G^pi denotes the matrix obtained from A_G by permuting rows and columns according to pi, and where |M |_F is the Frobenius norm of a matrix M. The (weighted) graph similarity problem, denoted by GSim (WSim), is the problem of computing this distance for two graphs of same order. This problem is closely related to the notoriously hard quadratic assignment problem (QAP), which is known to be NP-hard even for severely restricted cases. It is known that GSim (WSim) is NP-hard; we strengthen this hardness result by showing that the problem remains NP-hard even for the class of trees. Identifying the boundary of tractability for WSim is best done in the framework of linear algebra. We show that WSim is NP-hard as long as one of the matrices has unbounded rank or negative eigenvalues: hence, the realm of tractability is restricted to positive semi-definite matrices of bounded rank. Our main result is a polynomial time algorithm for the special case where the associated (weighted) adjacency graph for one of the matrices has a bounded number of twin equivalence classes. The key parameter underlying our algorithm is the clustering number of a graph; this parameter arises in context of the spectral graph drawing machinery

    On Ranked Approximate Matching Of Large Attributed Graphs

    Get PDF
    Many emerging database applications entail sophisticated graph based query manipulation, predominantly evident in large-scale scientific applications. To access the information embedded in graphs, efficient graph matching tools and algorithms have become of prime importance. Although the prohibitively expensive time complexity associated with exact sub-graph isomorphism techniques has limited its efficacy in the application domain, approximate yet efficient graph matching techniques have received much attention due to their pragmatic applicability. Since public domain databases are noisy and incomplete in nature, inexact graph matching techniques have proven to be more promising in terms of inferring knowledge from numerous structural data repositories. Contemporary algorithms for approximate graph matching incur substantial cost to generate candidates, and then test and rank them for possible match. Leading algorithms balance processing time and overall resource consumption cost by leveraging sophisticated data structures and graph properties to improve overall performance. In this dissertation, we propose novel techniques for approximate graph matching based on two different techniques called TraM or Top-k Graph Matching and Approximate Network Matching or AtoM respectively. While TraM off-loads a significant amount of its processing on to the database making the approach viable for large graphs, AtoM provides improved turn around time by means of graph summarization prior to matching. The summarization process is aided by domain sensitive similarity matrices, which in turn helps improve the matching performance. The vector space embedding of the graphs and efficient filtration of the search space enables computation of approximate graph similarity at a throw-away cost. We combine domain similarity and topological similarity to obtain overall graph similarity and compare them with neighborhood biased segments of the data-graph for proper matches. We show that our approach can naturally support the emerging trend in graph pattern queries and discuss its suitability for large networks as it can be seamlessly transformed to adhere to map-reduce framework. We have conducted thorough experiments on several synthetic and real data sets, and have demonstrated the effectiveness and efficiency of the proposed method

    Gradual Weisfeiler-Leman: Slow and Steady Wins the Race

    Full text link
    The classical Weisfeiler-Leman algorithm aka color refinement is fundamental for graph learning and central for successful graph kernels and graph neural networks. Originally developed for graph isomorphism testing, the algorithm iteratively refines vertex colors. On many datasets, the stable coloring is reached after a few iterations and the optimal number of iterations for machine learning tasks is typically even lower. This suggests that the colors diverge too fast, defining a similarity that is too coarse. We generalize the concept of color refinement and propose a framework for gradual neighborhood refinement, which allows a slower convergence to the stable coloring and thus provides a more fine-grained refinement hierarchy and vertex similarity. We assign new colors by clustering vertex neighborhoods, replacing the original injective color assignment function. Our approach is used to derive new variants of existing graph kernels and to approximate the graph edit distance via optimal assignments regarding vertex similarity. We show that in both tasks, our method outperforms the original color refinement with only moderate increase in running time advancing the state of the art

    Maximum common subgraph isomorphism algorithms for the matching of chemical structures

    Get PDF
    The maximum common subgraph (MCS) problem has become increasingly important in those aspects of chemoinformatics that involve the matching of 2D or 3D chemical structures. This paper provides a classification and a review of the many MCS algorithms, both exact and approximate, that have been described in the literature, and makes recommendations regarding their applicability to typical chemoinformatics tasks

    Towards an Efficient Discovery of the Topological Representative Subgraphs

    Full text link
    With the emergence of graph databases, the task of frequent subgraph discovery has been extensively addressed. Although the proposed approaches in the literature have made this task feasible, the number of discovered frequent subgraphs is still very high to be efficiently used in any further exploration. Feature selection for graph data is a way to reduce the high number of frequent subgraphs based on exact or approximate structural similarity. However, current structural similarity strategies are not efficient enough in many real-world applications, besides, the combinatorial nature of graphs makes it computationally very costly. In order to select a smaller yet structurally irredundant set of subgraphs, we propose a novel approach that mines the top-k topological representative subgraphs among the frequent ones. Our approach allows detecting hidden structural similarities that existing approaches are unable to detect such as the density or the diameter of the subgraph. In addition, it can be easily extended using any user defined structural or topological attributes depending on the sought properties. Empirical studies on real and synthetic graph datasets show that our approach is fast and scalable

    Models and Algorithms for Graph Watermarking

    Full text link
    We introduce models and algorithmic foundations for graph watermarking. Our frameworks include security definitions and proofs, as well as characterizations when graph watermarking is algorithmically feasible, in spite of the fact that the general problem is NP-complete by simple reductions from the subgraph isomorphism or graph edit distance problems. In the digital watermarking of many types of files, an implicit step in the recovery of a watermark is the mapping of individual pieces of data, such as image pixels or movie frames, from one object to another. In graphs, this step corresponds to approximately matching vertices of one graph to another based on graph invariants such as vertex degree. Our approach is based on characterizing the feasibility of graph watermarking in terms of keygen, marking, and identification functions defined over graph families with known distributions. We demonstrate the strength of this approach with exemplary watermarking schemes for two random graph models, the classic Erd\H{o}s-R\'{e}nyi model and a random power-law graph model, both of which are used to model real-world networks

    A simple yet effective baseline for non-attributed graph classification

    Full text link
    Graphs are complex objects that do not lend themselves easily to typical learning tasks. Recently, a range of approaches based on graph kernels or graph neural networks have been developed for graph classification and for representation learning on graphs in general. As the developed methodologies become more sophisticated, it is important to understand which components of the increasingly complex methods are necessary or most effective. As a first step, we develop a simple yet meaningful graph representation, and explore its effectiveness in graph classification. We test our baseline representation for the graph classification task on a range of graph datasets. Interestingly, this simple representation achieves similar performance as the state-of-the-art graph kernels and graph neural networks for non-attributed graph classification. Its performance on classifying attributed graphs is slightly weaker as it does not incorporate attributes. However, given its simplicity and efficiency, we believe that it still serves as an effective baseline for attributed graph classification. Our graph representation is efficient (linear-time) to compute. We also provide a simple connection with the graph neural networks. Note that these observations are only for the task of graph classification while existing methods are often designed for a broader scope including node embedding and link prediction. The results are also likely biased due to the limited amount of benchmark datasets available. Nevertheless, the good performance of our simple baseline calls for the development of new, more comprehensive benchmark datasets so as to better evaluate and analyze different graph learning methods. Furthermore, given the computational efficiency of our graph summary, we believe that it is a good candidate as a baseline method for future graph classification (or even other graph learning) studies.Comment: 13 pages. Shorter version appears at 2019 ICLR Workshop: Representation Learning on Graphs and Manifolds. arXiv admin note: text overlap with arXiv:1810.00826 by other author

    Structural Data Recognition with Graph Model Boosting

    Get PDF
    This paper presents a novel method for structural data recognition using a large number of graph models. In general, prevalent methods for structural data recognition have two shortcomings: 1) Only a single model is used to capture structural variation. 2) Naive recognition methods are used, such as the nearest neighbor method. In this paper, we propose strengthening the recognition performance of these models as well as their ability to capture structural variation. The proposed method constructs a large number of graph models and trains decision trees using the models. This paper makes two main contributions. The first is a novel graph model that can quickly perform calculations, which allows us to construct several models in a feasible amount of time. The second contribution is a novel approach to structural data recognition: graph model boosting. Comprehensive structural variations can be captured with a large number of graph models constructed in a boosting framework, and a sophisticated classifier can be formed by aggregating the decision trees. Consequently, we can carry out structural data recognition with powerful recognition capability in the face of comprehensive structural variation. The experiments shows that the proposed method achieves impressive results and outperforms existing methods on datasets of IAM graph database repository.Comment: 8 page
    corecore