52 research outputs found

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Deep Graph Laplacian Regularization for Robust Denoising of Real Images

    Full text link
    Recent developments in deep learning have revolutionized the paradigm of image restoration. However, its applications on real image denoising are still limited, due to its sensitivity to training data and the complex nature of real image noise. In this work, we combine the robustness merit of model-based approaches and the learning power of data-driven approaches for real image denoising. Specifically, by integrating graph Laplacian regularization as a trainable module into a deep learning framework, we are less susceptible to overfitting than pure CNN-based approaches, achieving higher robustness to small datasets and cross-domain denoising. First, a sparse neighborhood graph is built from the output of a convolutional neural network (CNN). Then the image is restored by solving an unconstrained quadratic programming problem, using a corresponding graph Laplacian regularizer as a prior term. The proposed restoration pipeline is fully differentiable and hence can be end-to-end trained. Experimental results demonstrate that our work is less prone to overfitting given small training data. It is also endowed with strong cross-domain generalization power, outperforming the state-of-the-art approaches by a remarkable margin

    Fast Color-guided Depth Denoising for RGB-D Images by Graph Filtering

    Full text link
    Depth images captured by off-the-shelf RGB-D cameras suffer from much stronger noise than color images. In this paper, we propose a method to denoise the depth images in RGB-D images by color-guided graph filtering. Our iterative method contains two components: color-guided similarity graph construction, and graph filtering on the depth signal. Implemented in graph vertex domain, filtering is accelerated as computation only occurs among neighboring vertices. Experimental results show that our method outperforms state-of-art depth image denoising methods significantly both on quality and efficiency.Comment: 5 pages, 4 figure

    Graph Signal Restoration Using Nested Deep Algorithm Unrolling

    Full text link
    Graph signal processing is a ubiquitous task in many applications such as sensor, social, transportation and brain networks, point cloud processing, and graph neural networks. Graph signals are often corrupted through sensing processes, and need to be restored for the above applications. In this paper, we propose two graph signal restoration methods based on deep algorithm unrolling (DAU). First, we present a graph signal denoiser by unrolling iterations of the alternating direction method of multiplier (ADMM). We then propose a general restoration method for linear degradation by unrolling iterations of Plug-and-Play ADMM (PnP-ADMM). In the second method, the unrolled ADMM-based denoiser is incorporated as a submodule. Therefore, our restoration method has a nested DAU structure. Thanks to DAU, parameters in the proposed denoising/restoration methods are trainable in an end-to-end manner. Since the proposed restoration methods are based on iterations of a (convex) optimization algorithm, the method is interpretable and keeps the number of parameters small because we only need to tune graph-independent regularization parameters. We solve two main problems in existing graph signal restoration methods: 1) limited performance of convex optimization algorithms due to fixed parameters which are often determined manually. 2) large number of parameters of graph neural networks that result in difficulty of training. Several experiments for graph signal denoising and interpolation are performed on synthetic and real-world data. The proposed methods show performance improvements to several existing methods in terms of root mean squared error in both tasks

    Advances in Distributed Graph Filtering

    Full text link
    Graph filters are one of the core tools in graph signal processing. A central aspect of them is their direct distributed implementation. However, the filtering performance is often traded with distributed communication and computational savings. To improve this tradeoff, this work generalizes state-of-the-art distributed graph filters to filters where every node weights the signal of its neighbors with different values while keeping the aggregation operation linear. This new implementation, labeled as edge-variant graph filter, yields a significant reduction in terms of communication rounds while preserving the approximation accuracy. In addition, we characterize the subset of shift-invariant graph filters that can be described with edge-variant recursions. By using a low-dimensional parametrization the proposed graph filters provide insights in approximating linear operators through the succession and composition of local operators, i.e., fixed support matrices, which span applications beyond the field of graph signal processing. A set of numerical results shows the benefits of the edge-variant filters over current methods and illustrates their potential to a wider range of applications than graph filtering
    • …
    corecore