177 research outputs found

    Convex Relaxations for Permutation Problems

    Full text link
    Seriation seeks to reconstruct a linear order between variables using unsorted, pairwise similarity information. It has direct applications in archeology and shotgun gene sequencing for example. We write seriation as an optimization problem by proving the equivalence between the seriation and combinatorial 2-SUM problems on similarity matrices (2-SUM is a quadratic minimization problem over permutations). The seriation problem can be solved exactly by a spectral algorithm in the noiseless case and we derive several convex relaxations for 2-SUM to improve the robustness of seriation solutions in noisy settings. These convex relaxations also allow us to impose structural constraints on the solution, hence solve semi-supervised seriation problems. We derive new approximation bounds for some of these relaxations and present numerical experiments on archeological data, Markov chains and DNA assembly from shotgun gene sequencing data.Comment: Final journal version, a few typos and references fixe

    Graph edit distance from spectral seriation

    Get PDF
    This paper is concerned with computing graph edit distance. One of the criticisms that can be leveled at existing methods for computing graph edit distance is that they lack some of the formality and rigor of the computation of string edit distance. Hence, our aim is to convert graphs to string sequences so that string matching techniques can be used. To do this, we use a graph spectral seriation method to convert the adjacency matrix into a string or sequence order. We show how the serial ordering can be established using the leading eigenvector of the graph adjacency matrix. We pose the problem of graph-matching as a maximum a posteriori probability (MAP) alignment of the seriation sequences for pairs of graphs. This treatment leads to an expression in which the edit cost is the negative logarithm of the a posteriori sequence alignment probability. We compute the edit distance by finding the sequence of string edit operations which minimizes the cost of the path traversing the edit lattice. The edit costs are determined by the components of the leading eigenvectors of the adjacency matrix and by the edge densities of the graphs being matched. We demonstrate the utility of the edit distance on a number of graph clustering problems

    Toward a multilevel representation of protein molecules: comparative approaches to the aggregation/folding propensity problem

    Full text link
    This paper builds upon the fundamental work of Niwa et al. [34], which provides the unique possibility to analyze the relative aggregation/folding propensity of the elements of the entire Escherichia coli (E. coli) proteome in a cell-free standardized microenvironment. The hardness of the problem comes from the superposition between the driving forces of intra- and inter-molecule interactions and it is mirrored by the evidences of shift from folding to aggregation phenotypes by single-point mutations [10]. Here we apply several state-of-the-art classification methods coming from the field of structural pattern recognition, with the aim to compare different representations of the same proteins gathered from the Niwa et al. data base; such representations include sequences and labeled (contact) graphs enriched with chemico-physical attributes. By this comparison, we are able to identify also some interesting general properties of proteins. Notably, (i) we suggest a threshold around 250 residues discriminating "easily foldable" from "hardly foldable" molecules consistent with other independent experiments, and (ii) we highlight the relevance of contact graph spectra for folding behavior discrimination and characterization of the E. coli solubility data. The soundness of the experimental results presented in this paper is proved by the statistically relevant relationships discovered among the chemico-physical description of proteins and the developed cost matrix of substitution used in the various discrimination systems.Comment: 17 pages, 3 figures, 46 reference

    Optimizing Quadratic Functions over the Set of Permutations

    Get PDF
    Seriation problem is widely used in many fields like archeology\cite{robinson1951method} and shotgun gene sequencing\cite{garriga2011banded,meidanis1998consecutive}. It aims to reorder a linear permutation based on given similarity information and it is an optimization problem over the set of permutation. Due to the large size of feasible set and the variable type, the seriation is an NP-hard quadratic mixed integer programming(MIP) problem. In order to solve this problem efficiently, a construction proposed recently by Goemans\cite{goemans2015smallest}, sorting network is used to constrain the solutions of the problem to be permutation and reformulate the problem. And we solve the MIP problem using heuristic method and branch and bound method and compare their performance

    Numerical Linear Algebra applications in Archaeology: the seriation and the photometric stereo problems

    Get PDF
    The aim of this thesis is to explore the application of Numerical Linear Algebra to Archaeology. An ordering problem called the seriation problem, used for dating findings and/or artifacts deposits, is analysed in terms of graph theory. In particular, a Matlab implementation of an algorithm for spectral seriation, based on the use of the Fiedler vector of the Laplacian matrix associated with the problem, is presented. We consider bipartite graphs for describing the seriation problem, since the interrelationship between the units (i.e. archaeological sites) to be reordered, can be described in terms of these graphs. In our archaeological metaphor of seriation, the two disjoint nodes sets into which the vertices of a bipartite graph can be divided, represent the excavation sites and the artifacts found inside them. Since it is a difficult task to determine the closest bipartite network to a given one, we describe how a starting network can be approximated by a bipartite one by solving a sequence of fairly simple optimization problems. Another numerical problem related to Archaeology is the 3D reconstruction of the shape of an object from a set of digital pictures. In particular, the Photometric Stereo (PS) photographic technique is considered

    Tree-walk kernels for computer vision

    Get PDF
    International audienceWe propose a family of positive-definite kernels between images, allowing to compute image similarity measures respectively in terms of color and of shape. The kernels consists in matching subtree-patterns called "tree-walks" of graphs extracted from the images, e.g. the segmentation graphs for color similarity and graphs of the discretized shapes or the point clouds in general for shape similarity. In both cases, we are able to design computationally efficient kernels which can be computed in polynomial-time in the size of the graphs, by leveraging specific properties of the graphs at hand such as planarity for adjacency graphs (segmentation graphs) or factorizability of the associated graphical model for point clouds. Our kernels can be used by any kernel-based learning method, and hence we present experimental results for supervised and semi-supervised classification as well as clustering of natural images and supervised classification of handwritten digits and Chinese characters from few training examples

    Matrix Reordering Methods for Table and Network Visualization

    Get PDF
    International audienceThis survey provides a description of algorithms to reorder visual matrices of tabular data and adjacency matrix of networks. The goal of this survey is to provide a comprehensive list of reordering algorithms published in different fields such as statistics, bioinformatics, or graph theory. While several of these algorithms are described in publications and others are available in software libraries and programs, there is little awareness of what is done across all fields. Our survey aims at describing these reordering algorithms in a unified manner to enable a wide audience to understand their differences and subtleties. We organize this corpus in a consistent manner, independently of the application or research field. We also provide practical guidance on how to select appropriate algorithms depending on the structure and size of the matrix to reorder, and point to implementations when available
    • …
    corecore