1,340 research outputs found

    Categorical Abstract Rewriting Systems and Functoriality of Graph Transformation

    Get PDF
    Rewriting systems are often defined as binary relations over a given set of objects. This simple definition is used to describe various properties of rewriting such as termination, confluence, normal forms etc. In this paper, we introduce a new notion of abstract rewriting in the framework of categories. Then, we define the functoriality property of rewriting systems. This property is sometimes called vertical composition. We show that most of graph transformation systems are functorial and provide a counter-example of graph transformation systems which is not functorial

    Towards 3-Dimensional Rewriting Theory

    Full text link
    String rewriting systems have proved very useful to study monoids. In good cases, they give finite presentations of monoids, allowing computations on those and their manipulation by a computer. Even better, when the presentation is confluent and terminating, they provide one with a notion of canonical representative of the elements of the presented monoid. Polygraphs are a higher-dimensional generalization of this notion of presentation, from the setting of monoids to the much more general setting of n-categories. One of the main purposes of this article is to give a progressive introduction to the notion of higher-dimensional rewriting system provided by polygraphs, and describe its links with classical rewriting theory, string and term rewriting systems in particular. After introducing the general setting, we will be interested in proving local confluence for polygraphs presenting 2-categories and introduce a framework in which a finite 3-dimensional rewriting system admits a finite number of critical pairs

    Presenting Finite Posets

    Full text link
    We introduce a monoidal category whose morphisms are finite partial orders, with chosen minimal and maximal elements as source and target respectively. After recalling the notion of presentation of a monoidal category by the means of generators and relations, we construct a presentation of our category, which corresponds to a variant of the notion of bialgebra.Comment: In Proceedings TERMGRAPH 2014, arXiv:1505.0681

    Transformation of Attributed Structures with Cloning (Long Version)

    Full text link
    Copying, or cloning, is a basic operation used in the specification of many applications in computer science. However, when dealing with complex structures, like graphs, cloning is not a straightforward operation since a copy of a single vertex may involve (implicitly)copying many edges. Therefore, most graph transformation approaches forbid the possibility of cloning. We tackle this problem by providing a framework for graph transformations with cloning. We use attributed graphs and allow rules to change attributes. These two features (cloning/changing attributes) together give rise to a powerful formal specification approach. In order to handle different kinds of graphs and attributes, we first define the notion of attributed structures in an abstract way. Then we generalise the sesqui-pushout approach of graph transformation in the proposed general framework and give appropriate conditions under which attributed structures can be transformed. Finally, we instantiate our general framework with different examples, showing that many structures can be handled and that the proposed framework allows one to specify complex operations in a natural way

    Rewriting Abstract Structures: Materialization Explained Categorically

    Get PDF
    The paper develops an abstract (over-approximating) semantics for double-pushout rewriting of graphs and graph-like objects. The focus is on the so-called materialization of left-hand sides from abstract graphs, a central concept in previous work. The first contribution is an accessible, general explanation of how materializations arise from universal properties and categorical constructions, in particular partial map classifiers, in a topos. Second, we introduce an extension by enriching objects with annotations and give a precise characterization of strongest post-conditions, which are effectively computable under certain assumptions

    Belief propagation in monoidal categories

    Full text link
    We discuss a categorical version of the celebrated belief propagation algorithm. This provides a way to prove that some algorithms which are known or suspected to be analogous, are actually identical when formulated generically. It also highlights the computational point of view in monoidal categories.Comment: In Proceedings QPL 2014, arXiv:1412.810
    corecore