16,476 research outputs found

    Generative Graph Convolutional Network for Growing Graphs

    Full text link
    Modeling generative process of growing graphs has wide applications in social networks and recommendation systems, where cold start problem leads to new nodes isolated from existing graph. Despite the emerging literature in learning graph representation and graph generation, most of them can not handle isolated new nodes without nontrivial modifications. The challenge arises due to the fact that learning to generate representations for nodes in observed graph relies heavily on topological features, whereas for new nodes only node attributes are available. Here we propose a unified generative graph convolutional network that learns node representations for all nodes adaptively in a generative model framework, by sampling graph generation sequences constructed from observed graph data. We optimize over a variational lower bound that consists of a graph reconstruction term and an adaptive Kullback-Leibler divergence regularization term. We demonstrate the superior performance of our approach on several benchmark citation network datasets

    A Multiscale Graph Convolutional Network Using Hierarchical Clustering

    Full text link
    The information contained in hierarchical topology, intrinsic to many networks, is currently underutilised. A novel architecture is explored which exploits this information through a multiscale decomposition. A dendrogram is produced by a Girvan-Newman hierarchical clustering algorithm. It is segmented and fed through graph convolutional layers, allowing the architecture to learn multiple scale latent space representations of the network, from fine to coarse grained. The architecture is tested on a benchmark citation network, demonstrating competitive performance. Given the abundance of hierarchical networks, possible applications include quantum molecular property prediction, protein interface prediction and multiscale computational substrates for partial differential equations.Comment: 5 pages, 2 figures, submitted as a GRL+ workshop paper for ICML 202

    Unsupervised Attributed Graph Learning: Models and Applications

    Get PDF
    abstract: Graph is a ubiquitous data structure, which appears in a broad range of real-world scenarios. Accordingly, there has been a surge of research to represent and learn from graphs in order to accomplish various machine learning and graph analysis tasks. However, most of these efforts only utilize the graph structure while nodes in real-world graphs usually come with a rich set of attributes. Typical examples of such nodes and their attributes are users and their profiles in social networks, scientific articles and their content in citation networks, protein molecules and their gene sets in biological networks as well as web pages and their content on the Web. Utilizing node features in such graphs---attributed graphs---can alleviate the graph sparsity problem and help explain various phenomena (e.g., the motives behind the formation of communities in social networks). Therefore, further study of attributed graphs is required to take full advantage of node attributes. In the wild, attributed graphs are usually unlabeled. Moreover, annotating data is an expensive and time-consuming process, which suffers from many limitations such as annotators’ subjectivity, reproducibility, and consistency. The challenges of data annotation and the growing increase of unlabeled attributed graphs in various real-world applications significantly demand unsupervised learning for attributed graphs. In this dissertation, I propose a set of novel models to learn from attributed graphs in an unsupervised manner. To better understand and represent nodes and communities in attributed graphs, I present different models in node and community levels. In node level, I utilize node features as well as the graph structure in attributed graphs to learn distributed representations of nodes, which can be useful in a variety of downstream machine learning applications. In community level, with a focus on social media, I take advantage of both node attributes and the graph structure to discover not only communities but also their sentiment-driven profiles and inter-community relations (i.e., alliance, antagonism, or no relation). The discovered community profiles and relations help to better understand the structure and dynamics of social media.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    A Comprehensive Survey on Graph Neural Networks

    Full text link
    Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.Comment: Minor revision (updated tables and references

    Network Vector: Distributed Representations of Networks with Global Context

    Full text link
    We propose a neural embedding algorithm called Network Vector, which learns distributed representations of nodes and the entire networks simultaneously. By embedding networks in a low-dimensional space, the algorithm allows us to compare networks in terms of structural similarity and to solve outstanding predictive problems. Unlike alternative approaches that focus on node level features, we learn a continuous global vector that captures each node's global context by maximizing the predictive likelihood of random walk paths in the network. Our algorithm is scalable to real world graphs with many nodes. We evaluate our algorithm on datasets from diverse domains, and compare it with state-of-the-art techniques in node classification, role discovery and concept analogy tasks. The empirical results show the effectiveness and the efficiency of our algorithm

    Deep Learning on Graphs: A Survey

    Full text link
    Deep learning has been shown to be successful in a number of domains, ranging from acoustics, images, to natural language processing. However, applying deep learning to the ubiquitous graph data is non-trivial because of the unique characteristics of graphs. Recently, substantial research efforts have been devoted to applying deep learning methods to graphs, resulting in beneficial advances in graph analysis techniques. In this survey, we comprehensively review the different types of deep learning methods on graphs. We divide the existing methods into five categories based on their model architectures and training strategies: graph recurrent neural networks, graph convolutional networks, graph autoencoders, graph reinforcement learning, and graph adversarial methods. We then provide a comprehensive overview of these methods in a systematic manner mainly by following their development history. We also analyze the differences and compositions of different methods. Finally, we briefly outline the applications in which they have been used and discuss potential future research directions.Comment: Accepted by Transactions on Knowledge and Data Engineering. 24 pages, 11 figure

    Semi-Supervised Learning on Graphs Based on Local Label Distributions

    Full text link
    Most approaches that tackle the problem of node classification consider nodes to be similar, if they have shared neighbors or are close to each other in the graph. Recent methods for attributed graphs additionally take attributes of neighboring nodes into account. We argue that the class labels of the neighbors bear important information and considering them helps to improve classification quality. Two nodes which are similar based on class labels in their neighborhood do not need to be close-by in the graph and may even belong to different connected components. In this work, we propose a novel approach for the semi-supervised node classification. Precisely, we propose a new node embedding which is based on the class labels in the local neighborhood of a node. We show that this is a different setting from attribute-based embeddings and thus, we propose a new method to learn label-based node embeddings which can mirror a variety of relations between the class labels of neighboring nodes. Our experimental evaluation demonstrates that our new methods can significantly improve the prediction quality on real world data sets

    Multimodal Deep Network Embedding with Integrated Structure and Attribute Information

    Full text link
    Network embedding is the process of learning low-dimensional representations for nodes in a network, while preserving node features. Existing studies only leverage network structure information and focus on preserving structural features. However, nodes in real-world networks often have a rich set of attributes providing extra semantic information. It has been demonstrated that both structural and attribute features are important for network analysis tasks. To preserve both features, we investigate the problem of integrating structure and attribute information to perform network embedding and propose a Multimodal Deep Network Embedding (MDNE) method. MDNE captures the non-linear network structures and the complex interactions among structures and attributes, using a deep model consisting of multiple layers of non-linear functions. Since structures and attributes are two different types of information, a multimodal learning method is adopted to pre-process them and help the model to better capture the correlations between node structure and attribute information. We employ both structural proximity and attribute proximity in the loss function to preserve the respective features and the representations are obtained by minimizing the loss function. Results of extensive experiments on four real-world datasets show that the proposed method performs significantly better than baselines on a variety of tasks, which demonstrate the effectiveness and generality of our method.Comment: 15 pages, 10 figure

    Inductive Representation Learning on Large Graphs

    Full text link
    Low-dimensional embeddings of nodes in large graphs have proved extremely useful in a variety of prediction tasks, from content recommendation to identifying protein functions. However, most existing approaches require that all nodes in the graph are present during training of the embeddings; these previous approaches are inherently transductive and do not naturally generalize to unseen nodes. Here we present GraphSAGE, a general, inductive framework that leverages node feature information (e.g., text attributes) to efficiently generate node embeddings for previously unseen data. Instead of training individual embeddings for each node, we learn a function that generates embeddings by sampling and aggregating features from a node's local neighborhood. Our algorithm outperforms strong baselines on three inductive node-classification benchmarks: we classify the category of unseen nodes in evolving information graphs based on citation and Reddit post data, and we show that our algorithm generalizes to completely unseen graphs using a multi-graph dataset of protein-protein interactions.Comment: Published in NIPS 2017; version with full appendix and minor correction

    Community Detection and Growth Potential Prediction from Patent Citation Networks

    Full text link
    The scoring of patents is useful for technology management analysis. Therefore, a necessity of developing citation network clustering and prediction of future citations for practical patent scoring arises. In this paper, we propose a community detection method using the Node2vec. And in order to analyze growth potential we compare three ''time series analysis methods'', the Long Short-Term Memory (LSTM), ARIMA model, and Hawkes Process. The results of our experiments, we could find common technical points from those clusters by Node2vec. Furthermore, we found that the prediction accuracy of the ARIMA model was higher than that of other models.Comment: arXiv admin note: text overlap with arXiv:1607.00653 by other author
    corecore