8,606 research outputs found

    Bounds on Ramsey Games via Alterations

    Full text link
    This note contains a refined alteration approach for constructing H-free graphs: we show that removing all edges in H-copies of the binomial random graph does not significantly change the independence number (for suitable edge-probabilities); previous alteration approaches of Erdos and Krivelevich remove only a subset of these edges. We present two applications to online graph Ramsey games of recent interest, deriving new bounds for Ramsey, Paper, Scissors games and online Ramsey numbers.Comment: 9 page

    Positional Games

    Full text link
    Positional games are a branch of combinatorics, researching a variety of two-player games, ranging from popular recreational games such as Tic-Tac-Toe and Hex, to purely abstract games played on graphs and hypergraphs. It is closely connected to many other combinatorial disciplines such as Ramsey theory, extremal graph and set theory, probabilistic combinatorics, and to computer science. We survey the basic notions of the field, its approaches and tools, as well as numerous recent advances, standing open problems and promising research directions.Comment: Submitted to Proceedings of the ICM 201

    A machine learning approach to constructing Ramsey graphs leads to the Trahtenbrot-Zykov problem.

    Get PDF
    Attempts at approaching the well-known and difficult problem of constructing Ramsey graphs via machine learning lead to another difficult problem posed by Zykov in 1963 (now commonly referred to as the Trahtenbrot-Zykov problem): For which graphs F does there exist some graph G such that the neighborhood of every vertex in G induces a subgraph isomorphic to F? Chapter 1 provides a brief introduction to graph theory. Chapter 2 introduces Ramsey theory for graphs. Chapter 3 details a reinforcement learning implementation for Ramsey graph construction. The implementation is based on board game software, specifically the AlphaZero program and its success learning to play games from scratch. The chapter ends with a description of how computing challenges naturally shifted the project towards the Trahtenbrot-Zykov problem. Chapter 3 also includes recommendations for continuing the project and attempting to overcome these challenges. Chapter 4 defines the Trahtenbrot-Zykov problem and outlines its history, including proofs of results omitted from their original papers. This chapter also contains a program for constructing graphs with all neighborhood-induced subgraphs isomorphic to a given graph F. The end of Chapter 4 presents constructions from the program when F is a Ramsey graph. Constructing such graphs is a non-trivial task, as Bulitko proved in 1973 that the Trahtenbrot-Zykov problem is undecidable. Chapter 5 is a translation from Russian to English of this famous result, a proof not previously available in English. Chapter 6 introduces Cayley graphs and their relationship to the Trahtenbrot-Zykov problem. The chapter ends with constructions of Cayley graphs Γ in which the neighborhood of every vertex of Γ induces a subgraph isomorphic to a given Ramsey graph, which leads to a conjecture regarding the unique extremal Ramsey(4, 4) graph

    Strong Ramsey Games in Unbounded Time

    Full text link
    For two graphs BB and HH the strong Ramsey game R(B,H)\mathcal{R}(B,H) on the board BB and with target HH is played as follows. Two players alternately claim edges of BB. The first player to build a copy of HH wins. If none of the players win, the game is declared a draw. A notorious open question of Beck asks whether the first player has a winning strategy in R(Kn,Kk)\mathcal{R}(K_n,K_k) in bounded time as nn\rightarrow\infty. Surprisingly, in a recent paper Hefetz et al. constructed a 55-uniform hypergraph H\mathcal{H} for which they proved that the first player does not have a winning strategy in R(Kn(5),H)\mathcal{R}(K_n^{(5)},\mathcal{H}) in bounded time. They naturally ask whether the same result holds for graphs. In this paper we make further progress in decreasing the rank. In our first result, we construct a graph GG (in fact G=K6K4G=K_6\setminus K_4) and prove that the first player does not have a winning strategy in R(KnKn,G)\mathcal{R}(K_n \sqcup K_n,G) in bounded time. As an application of this result we deduce our second result in which we construct a 44-uniform hypergraph GG' and prove that the first player does not have a winning strategy in R(Kn(4),G)\mathcal{R}(K_n^{(4)},G') in bounded time. This improves the result in the paper above. An equivalent formulation of our first result is that the game R(KωKω,G)\mathcal{R}(K_\omega\sqcup K_\omega,G) is a draw. Another reason for interest on the board KωKωK_\omega\sqcup K_\omega is a folklore result that the disjoint union of two finite positional games both of which are first player wins is also a first player win. An amusing corollary of our first result is that at least one of the following two natural statements is false: (1) for every graph HH, R(Kω,H)\mathcal{R}(K_\omega,H) is a first player win; (2) for every graph HH if R(Kω,H)\mathcal{R}(K_\omega,H) is a first player win, then R(KωKω,H)\mathcal{R}(K_\omega\sqcup K_\omega,H) is also a first player win.Comment: 18 pages, 46 figures; changes: fully reworked presentatio

    Strong Ramsey Games in Unbounded Time

    Get PDF
    For two graphs BB and HH the strong Ramsey game R(B,H)\mathcal{R}(B,H) on the board BB and with target HH is played as follows. Two players alternately claim edges of BB. The first player to build a copy of HH wins. If none of the players win, the game is declared a draw. A notorious open question of Beck asks whether the first player has a winning strategy in R(Kn,Kk)\mathcal{R}(K_n,K_k) in bounded time as nn\rightarrow\infty. Surprisingly, in a recent paper Hefetz et al. constructed a 55-uniform hypergraph H\mathcal{H} for which they proved that the first player does not have a winning strategy in R(Kn(5),H)\mathcal{R}(K_n^{(5)},\mathcal{H}) in bounded time. They naturally ask whether the same result holds for graphs. In this paper we make further progress in decreasing the rank. In our first result, we construct a graph GG (in fact G=K6K4G=K_6\setminus K_4) and prove that the first player does not have a winning strategy in R(KnKn,G)\mathcal{R}(K_n \sqcup K_n,G) in bounded time. As an application of this result we deduce our second result in which we construct a 44-uniform hypergraph GG' and prove that the first player does not have a winning strategy in R(Kn(4),G)\mathcal{R}(K_n^{(4)},G') in bounded time. This improves the result in the paper above. An equivalent formulation of our first result is that the game R(KωKω,G)\mathcal{R}(K_\omega\sqcup K_\omega,G) is a draw. Another reason for interest on the board KωKωK_\omega\sqcup K_\omega is a folklore result that the disjoint union of two finite positional games both of which are first player wins is also a first player win. An amusing corollary of our first result is that at least one of the following two natural statements is false: (1) for every graph HH, R(Kω,H)\mathcal{R}(K_\omega,H) is a first player win; (2) for every graph HH if R(Kω,H)\mathcal{R}(K_\omega,H) is a first player win, then R(KωKω,H)\mathcal{R}(K_\omega\sqcup K_\omega,H) is also a first player win.Comment: 17 pages, 48 figures; improved presentation, particularly in section

    Short proofs of some extremal results

    Get PDF
    We prove several results from different areas of extremal combinatorics, giving complete or partial solutions to a number of open problems. These results, coming from areas such as extremal graph theory, Ramsey theory and additive combinatorics, have been collected together because in each case the relevant proofs are quite short.Comment: 19 page

    Mini-Workshop: Positional Games

    Get PDF
    This mini-workshop focused on Positional Games and related fields. Positional Games Theory is a branch of Combinatorics whose main aim is to systematically develop an extensive mathematical basis for a variety of two-player games of perfect information and without chance moves, usually played on discrete objects. These include popular recreational games such as Tic-Tac-Toe and Hex as well as purely abstract games played on graphs and hypergraphs. Though a close relative of the classical Game Theory of von Neumann and of Nim-like games, popularized by Conway and others, Positional Games are quite different and are more of a combinatorial nature. The subject is strongly related to several other branches of Combinatorics like Ramsey Theory, Extremal Graph and Set Theory, and the Probabilistic Method. It has also proven to be instrumental in deriving central results in Theoretical Computer Science, in particular in derandomization and algorithmization of important probabilistic tools. Despite being a relatively young topic, there are already three textbooks dedicated to Positional Games as wel

    Endgame problems of Sim-like graph Ramsey avoidance games are PSPACE-complete

    Get PDF
    AbstractIn Sim, two players compete on a complete graph of six vertices (K6). The players alternate in coloring one as yet uncolored edge using their color. The player who first completes a monochromatic triangle (K3) loses. Replacing K6 and K3 by arbitrary graphs generalizes Sim to graph Ramsey avoidance games. Given an endgame position in these games, the problem of deciding whether the player who moves next has a winning strategy is shown to be PSPACE-complete. It can be reduced from the problem of whether the first player has a winning strategy in the game Gpos(POSCNF) (Schaefer, J. Comput. System Sci. 16 (2) (1978) 185–225). The following game variants are also shown to have PSPACE-complete endgame problems: (1) completing a monochromatic subgraph isomorphic to A is forbidden and the player who is first unable to move loses, (2) both players are allowed to color one or more edges in each move, (3) more than two players take part in the game, and (4) each player has to avoid a separate graph. In all results, the graphs to be avoided can be restricted to the bowtie graph (⋈, i.e., two triangles with one common vertex)
    corecore