1,701 research outputs found

    The DLV System for Knowledge Representation and Reasoning

    Full text link
    This paper presents the DLV system, which is widely considered the state-of-the-art implementation of disjunctive logic programming, and addresses several aspects. As for problem solving, we provide a formal definition of its kernel language, function-free disjunctive logic programs (also known as disjunctive datalog), extended by weak constraints, which are a powerful tool to express optimization problems. We then illustrate the usage of DLV as a tool for knowledge representation and reasoning, describing a new declarative programming methodology which allows one to encode complex problems (up to Δ3P\Delta^P_3-complete problems) in a declarative fashion. On the foundational side, we provide a detailed analysis of the computational complexity of the language of DLV, and by deriving new complexity results we chart a complete picture of the complexity of this language and important fragments thereof. Furthermore, we illustrate the general architecture of the DLV system which has been influenced by these results. As for applications, we overview application front-ends which have been developed on top of DLV to solve specific knowledge representation tasks, and we briefly describe the main international projects investigating the potential of the system for industrial exploitation. Finally, we report about thorough experimentation and benchmarking, which has been carried out to assess the efficiency of the system. The experimental results confirm the solidity of DLV and highlight its potential for emerging application areas like knowledge management and information integration.Comment: 56 pages, 9 figures, 6 table

    Solving Hard Graph Problems with Combinatorial Computing and Optimization

    Get PDF
    Many problems arising in graph theory are difficult by nature, and finding solutions to large or complex instances of them often require the use of computers. As some such problems are NPNP-hard or lie even higher in the polynomial hierarchy, it is unlikely that efficient, exact algorithms will solve them. Therefore, alternative computational methods are used. Combinatorial computing is a branch of mathematics and computer science concerned with these methods, where algorithms are developed to generate and search through combinatorial structures in order to determine certain properties of them. In this thesis, we explore a number of such techniques, in the hopes of solving specific problem instances of interest. Three separate problems are considered, each of which is attacked with different methods of combinatorial computing and optimization. The first, originally proposed by ErdH{o}s and Hajnal in 1967, asks to find the Folkman number Fe(3,3;4)F_e(3,3;4), defined as the smallest order of a K4K_4-free graph that is not the union of two triangle-free graphs. A notoriously difficult problem associated with Ramsey theory, the best known bounds on it prior to this work were 19leqFe(3,3;4)leq94119 leq F_e(3,3;4) leq 941. We improve the upper bound to Fe(3,3;4)leq786F_e(3,3;4) leq 786 using a combination of known methods and the Goemans-Williamson semi-definite programming relaxation of MAX-CUT. The second problem of interest is the Ramsey number R(C4,Km)R(C_4,K_m), which is the smallest nn such that any nn-vertex graph contains a cycle of length four or an independent set of order mm. With the help of combinatorial algorithms, we determine R(C4,K9)=30R(C_4,K_9)=30 and R(C4,K10)=36R(C_4,K_{10})=36 using large-scale computations on the Open Science Grid. Finally, we explore applications of the well-known Lenstra-Lenstra-Lov\u27{a}sz (LLL) algorithm, a polynomial-time algorithm that, when given a basis of a lattice, returns a basis for the same lattice with relatively short vectors. The main result of this work is an application to graph domination, where certain hard instances are solved using this algorithm as a heuristic

    Some hard families of parameterised counting problems

    Get PDF
    We consider parameterised subgraph-counting problems of the following form: given a graph G, how many k-tuples of its vertices have a given property? A number of such problems are known to be #W[1]-complete; here we substantially generalise some of these existing results by proving hardness for two large families of such problems. We demonstrate that it is #W[1]-hard to count the number of k-vertex subgraphs having any property where the number of distinct edge-densities of labelled subgraphs that satisfy the property is o(k^2). In the special case that the property in question depends only on the number of edges in the subgraph, we give a strengthening of this result which leads to our second family of hard problems.Comment: A few more minor changes. This version to appear in the ACM Transactions on Computation Theor
    • …
    corecore