89 research outputs found

    Sensor Network Based Collision-Free Navigation and Map Building for Mobile Robots

    Full text link
    Safe robot navigation is a fundamental research field for autonomous robots including ground mobile robots and flying robots. The primary objective of a safe robot navigation algorithm is to guide an autonomous robot from its initial position to a target or along a desired path with obstacle avoidance. With the development of information technology and sensor technology, the implementations combining robotics with sensor network are focused on in the recent researches. One of the relevant implementations is the sensor network based robot navigation. Moreover, another important navigation problem of robotics is safe area search and map building. In this report, a global collision-free path planning algorithm for ground mobile robots in dynamic environments is presented firstly. Considering the advantages of sensor network, the presented path planning algorithm is developed to a sensor network based navigation algorithm for ground mobile robots. The 2D range finder sensor network is used in the presented method to detect static and dynamic obstacles. The sensor network can guide each ground mobile robot in the detected safe area to the target. Furthermore, the presented navigation algorithm is extended into 3D environments. With the measurements of the sensor network, any flying robot in the workspace is navigated by the presented algorithm from the initial position to the target. Moreover, in this report, another navigation problem, safe area search and map building for ground mobile robot, is studied and two algorithms are presented. In the first presented method, we consider a ground mobile robot equipped with a 2D range finder sensor searching a bounded 2D area without any collision and building a complete 2D map of the area. Furthermore, the first presented map building algorithm is extended to another algorithm for 3D map building

    Traveling Salesman Problem

    Get PDF
    This book is a collection of current research in the application of evolutionary algorithms and other optimal algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry students in the field of applied Mathematics, Computing Science and Engineering

    Interdisciplinary applications and interpretations of ERTS data within the Susquehanna River Basin (resource inventory, land use, and pollution)

    Get PDF
    The author has identified the following significant results. An interdisciplinary group at Penn State University is analyzing ERTS-1 data. The geographical area of interest is that of the Susquehanna River Basin in Pennsylvania. The objectives of the work have been to ascertain the usefulness of ERTS-1 data in the areas of natural resources and land use inventory, geology and hydrology, and environmental quality. Specific results include a study of land use in the Harrisburg area, discrimination between types of forest resources and vegetation, detection of previously unknown geologic faults and correlation of these with known mineral deposits and ground water, mapping of mine spoils in the anthracite region of eastern Pennsylvania, and mapping of strip mines and acid mine drainage in central Pennsylvania. Both photointerpretive techniques and automatic computer processing methods have been developed and used, separately and in a combined approach

    Combinatorial Solutions for Shape Optimization in Computer Vision

    Get PDF
    This thesis aims at solving so-called shape optimization problems, i.e. problems where the shape of some real-world entity is sought, by applying combinatorial algorithms. I present several advances in this field, all of them based on energy minimization. The addressed problems will become more intricate in the course of the thesis, starting from problems that are solved globally, then turning to problems where so far no global solutions are known. The first two chapters treat segmentation problems where the considered grouping criterion is directly derived from the image data. That is, the respective data terms do not involve any parameters to estimate. These problems will be solved globally. The first of these chapters treats the problem of unsupervised image segmentation where apart from the image there is no other user input. Here I will focus on a contour-based method and show how to integrate curvature regularity into a ratio-based optimization framework. The arising optimization problem is reduced to optimizing over the cycles in a product graph. This problem can be solved globally in polynomial, effectively linear time. As a consequence, the method does not depend on initialization and translational invariance is achieved. This is joint work with Daniel Cremers and Simon Masnou. I will then proceed to the integration of shape knowledge into the framework, while keeping translational invariance. This problem is again reduced to cycle-finding in a product graph. Being based on the alignment of shape points, the method actually uses a more sophisticated shape measure than most local approaches and still provides global optima. It readily extends to tracking problems and allows to solve some of them in real-time. I will present an extension to highly deformable shape models which can be included in the global optimization framework. This method simultaneously allows to decompose a shape into a set of deformable parts, based only on the input images. This is joint work with Daniel Cremers. In the second part segmentation is combined with so-called correspondence problems, i.e. the underlying grouping criterion is now based on correspondences that have to be inferred simultaneously. That is, in addition to inferring the shapes of objects, one now also tries to put into correspondence the points in several images. The arising problems become more intricate and are no longer optimized globally. This part is divided into two chapters. The first chapter treats the topic of real-time motion segmentation where objects are identified based on the observations that the respective points in the video will move coherently. Rather than pre-estimating motion, a single energy functional is minimized via alternating optimization. The main novelty lies in the real-time capability, which is achieved by exploiting a fast combinatorial segmentation algorithm. The results are furthermore improved by employing a probabilistic data term. This is joint work with Daniel Cremers. The final chapter presents a method for high resolution motion layer decomposition and was developed in combination with Daniel Cremers and Thomas Pock. Layer decomposition methods support the notion of a scene model, which allows to model occlusion and enforce temporal consistency. The contributions are twofold: from a practical point of view the proposed method allows to recover fine-detailed layer images by minimizing a single energy. This is achieved by integrating a super-resolution method into the layer decomposition framework. From a theoretical viewpoint the proposed method introduces layer-based regularity terms as well as a graph cut-based scheme to solve for the layer domains. The latter is combined with powerful continuous convex optimization techniques into an alternating minimization scheme. Lastly I want to mention that a significant part of this thesis is devoted to the recent trend of exploiting parallel architectures, in particular graphics cards: many combinatorial algorithms are easily parallelized. In Chapter 3 we will see a case where the standard algorithm is hard to parallelize, but easy for the respective problem instances
    • …
    corecore