6,831 research outputs found

    Graph Neural Networks and Reinforcement Learning for Behavior Generation in Semantic Environments

    Full text link
    Most reinforcement learning approaches used in behavior generation utilize vectorial information as input. However, this requires the network to have a pre-defined input-size -- in semantic environments this means assuming the maximum number of vehicles. Additionally, this vectorial representation is not invariant to the order and number of vehicles. To mitigate the above-stated disadvantages, we propose combining graph neural networks with actor-critic reinforcement learning. As graph neural networks apply the same network to every vehicle and aggregate incoming edge information, they are invariant to the number and order of vehicles. This makes them ideal candidates to be used as networks in semantic environments -- environments consisting of objects lists. Graph neural networks exhibit some other advantages that make them favorable to be used in semantic environments. The relational information is explicitly given and does not have to be inferred. Moreover, graph neural networks propagate information through the network and can gather higher-degree information. We demonstrate our approach using a highway lane-change scenario and compare the performance of graph neural networks to conventional ones. We show that graph neural networks are capable of handling scenarios with a varying number and order of vehicles during training and application

    Programmable Agents

    Get PDF
    We build deep RL agents that execute declarative programs expressed in formal language. The agents learn to ground the terms in this language in their environment, and can generalize their behavior at test time to execute new programs that refer to objects that were not referenced during training. The agents develop disentangled interpretable representations that allow them to generalize to a wide variety of zero-shot semantic tasks
    corecore