1,163 research outputs found

    Grad and Classes with Bounded Expansion II. Algorithmic Aspects

    Full text link
    Classes of graphs with bounded expansion are a generalization of both proper minor closed classes and degree bounded classes. Such classes are based on a new invariant, the greatest reduced average density (grad) of G with rank r, ∇r(G). These classes are also characterized by the existence of several partition results such as the existence of low tree-width and low tree-depth colorings. These results lead to several new linear time algorithms, such as an algorithm for counting all the isomorphs of a fixed graph in an input graph or an algorithm for checking whether there exists a subset of vertices of a priori bounded size such that the subgraph induced by this subset satisfies some arbirtrary but fixed first order sentence. We also show that for fixed p, computing the distances between two vertices up to distance p may be performed in constant time per query after a linear time preprocessing. We also show, extending several earlier results, that a class of graphs has sublinear separators if it has sub-exponential expansion. This result result is best possible in general

    On Brambles, Grid-Like Minors, and Parameterized Intractability of Monadic Second-Order Logic

    Full text link
    Brambles were introduced as the dual notion to treewidth, one of the most central concepts of the graph minor theory of Robertson and Seymour. Recently, Grohe and Marx showed that there are graphs G, in which every bramble of order larger than the square root of the treewidth is of exponential size in |G|. On the positive side, they show the existence of polynomial-sized brambles of the order of the square root of the treewidth, up to log factors. We provide the first polynomial time algorithm to construct a bramble in general graphs and achieve this bound, up to log-factors. We use this algorithm to construct grid-like minors, a replacement structure for grid-minors recently introduced by Reed and Wood, in polynomial time. Using the grid-like minors, we introduce the notion of a perfect bramble and an algorithm to find one in polynomial time. Perfect brambles are brambles with a particularly simple structure and they also provide us with a subgraph that has bounded degree and still large treewidth; we use them to obtain a meta-theorem on deciding certain parameterized subgraph-closed problems on general graphs in time singly exponential in the parameter. The second part of our work deals with providing a lower bound to Courcelle's famous theorem, stating that every graph property that can be expressed by a sentence in monadic second-order logic (MSO), can be decided by a linear time algorithm on classes of graphs of bounded treewidth. Using our results from the first part of our work we establish a strong lower bound for tractability of MSO on classes of colored graphs

    A Note on Graphs of Linear Rank-Width 1

    Full text link
    We prove that a connected graph has linear rank-width 1 if and only if it is a distance-hereditary graph and its split decomposition tree is a path. An immediate consequence is that one can decide in linear time whether a graph has linear rank-width at most 1, and give an obstruction if not. Other immediate consequences are several characterisations of graphs of linear rank-width 1. In particular a connected graph has linear rank-width 1 if and only if it is locally equivalent to a caterpillar if and only if it is a vertex-minor of a path [O-joung Kwon and Sang-il Oum, Graphs of small rank-width are pivot-minors of graphs of small tree-width, arxiv:1203.3606] if and only if it does not contain the co-K_2 graph, the Net graph and the 5-cycle graph as vertex-minors [Isolde Adler, Arthur M. Farley and Andrzej Proskurowski, Obstructions for linear rank-width at most 1, arxiv:1106.2533].Comment: 9 pages, 2 figures. Not to be publishe

    Shrub-depth: Capturing Height of Dense Graphs

    Full text link
    The recent increase of interest in the graph invariant called tree-depth and in its applications in algorithms and logic on graphs led to a natural question: is there an analogously useful "depth" notion also for dense graphs (say; one which is stable under graph complementation)? To this end, in a 2012 conference paper, a new notion of shrub-depth has been introduced, such that it is related to the established notion of clique-width in a similar way as tree-depth is related to tree-width. Since then shrub-depth has been successfully used in several research papers. Here we provide an in-depth review of the definition and basic properties of shrub-depth, and we focus on its logical aspects which turned out to be most useful. In particular, we use shrub-depth to give a characterization of the lower ω{\omega} levels of the MSO1 transduction hierarchy of simple graphs

    On the Parameterized Intractability of Monadic Second-Order Logic

    Full text link
    One of Courcelle's celebrated results states that if C is a class of graphs of bounded tree-width, then model-checking for monadic second order logic (MSO_2) is fixed-parameter tractable (fpt) on C by linear time parameterized algorithms, where the parameter is the tree-width plus the size of the formula. An immediate question is whether this is best possible or whether the result can be extended to classes of unbounded tree-width. In this paper we show that in terms of tree-width, the theorem cannot be extended much further. More specifically, we show that if C is a class of graphs which is closed under colourings and satisfies certain constructibility conditions and is such that the tree-width of C is not bounded by \log^{84} n then MSO_2-model checking is not fpt unless SAT can be solved in sub-exponential time. If the tree-width of C is not poly-logarithmically bounded, then MSO_2-model checking is not fpt unless all problems in the polynomial-time hierarchy can be solved in sub-exponential time

    Grad and classes with bounded expansion I. decompositions

    Full text link
    We introduce classes of graphs with bounded expansion as a generalization of both proper minor closed classes and degree bounded classes. Such classes are based on a new invariant, the greatest reduced average density (grad) of G with rank r, grad r(G). For these classes we prove the existence of several partition results such as the existence of low tree-width and low tree-depth colorings. This generalizes and simplifies several earlier results (obtained for minor closed classes)

    Are there any good digraph width measures?

    Full text link
    Several different measures for digraph width have appeared in the last few years. However, none of them shares all the "nice" properties of treewidth: First, being \emph{algorithmically useful} i.e. admitting polynomial-time algorithms for all \MS1-definable problems on digraphs of bounded width. And, second, having nice \emph{structural properties} i.e. being monotone under taking subdigraphs and some form of arc contractions. As for the former, (undirected) \MS1 seems to be the least common denominator of all reasonably expressive logical languages on digraphs that can speak about the edge/arc relation on the vertex set.The latter property is a necessary condition for a width measure to be characterizable by some version of the cops-and-robber game characterizing the ordinary treewidth. Our main result is that \emph{any reasonable} algorithmically useful and structurally nice digraph measure cannot be substantially different from the treewidth of the underlying undirected graph. Moreover, we introduce \emph{directed topological minors} and argue that they are the weakest useful notion of minors for digraphs
    • …
    corecore