4,746 research outputs found

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Computational Analysis of Structure-Activity Relationships : From Prediction to Visualization Methods

    Get PDF
    Understanding how structural modifications affect the biological activity of small molecules is one of the central themes in medicinal chemistry. By no means is structure-activity relationship (SAR) analysis a priori dependent on computational methods. However, as molecular data sets grow in size, we quickly approach our limits to access and compare structures and associated biological properties so that computational data processing and analysis often become essential. Here, different types of approaches of varying complexity for the analysis of SAR information are presented, which can be applied in the context of screening and chemical optimization projects. The first part of this thesis is dedicated to machine-learning strategies that aim at de novo ligand prediction and the preferential detection of potent hits in virtual screening. High emphasis is put on benchmarking of different strategies and a thorough evaluation of their utility in practical applications. However, an often claimed disadvantage of these prediction methods is their "black box" character because they do not necessarily reveal which structural features are associated with biological activity. Therefore, these methods are complemented by more descriptive SAR analysis approaches showing a higher degree of interpretability. Concepts from information theory are adapted to identify activity-relevant structure-derived descriptors. Furthermore, compound data mining methods exploring prespecified properties of available bioactive compounds on a large scale are designed to systematically relate molecular transformations to activity changes. Finally, these approaches are complemented by graphical methods that primarily help to access and visualize SAR data in congeneric series of compounds and allow the formulation of intuitive SAR rules applicable to the design of new compounds. The compendium of SAR analysis tools introduced in this thesis investigates SARs from different perspectives

    Toward a comprehensive dam monitoring: On-site and remote-retrieved forcing factors and resulting displacements (gnss and ps–insar)

    Get PDF
    Many factors can influence the displacements of a dam, including water level variability and environmental temperatures, in addition to the dam composition. In this work, optical-based classification, thermal diachronic analysis, and a quasi-PS (Persistent Scatter) Interferometric SAR technique have been applied to determine both forcing factors and resulting displacements of the crest of the Castello dam (South Italy) over a one-year time period. The dataset includes Sentinel-1A images acquired in Interferometric Wide swath mode using the Terrain Observation with Progressive Scans SAR (TOPSAR); Landsat 8 Thermal Infrared Sensor (TIRS) thermal images, and Global Navigation Satellite System (GNSS) for interpreting the motion of the top of the dam retrieved via interferometry. Results suggest that it is possible to monitor both dam water level and temperature periodic forcing factors and resulting displacements via a synergistic use of different satellite images

    Determination of periodic deformation from InSAR results using the FFT time series analysis method in Gediz Graben

    Get PDF
    Permanent Scatterers (PS) point velocities obtained by the interferometric synthetic aperture radar (InSAR) method are generally determined using the linear regression model, which ignores periodic and seasonal effects. In this study, software was developed that can detect periodic effects by applying fast Fourier transformation (FFT) time series analysis to InSAR results. Using the FFT time series analysis, the periodic components of the surface movements at the PS points were determined, and then the annual velocity values free from periodic effects were obtained. The study area was chosen as the Gediz Graben, a tectonically active region where aseismic surface deformations have been observed in recent years. As a result, using the developed method, seasonal effects were successfully determined with the InSAR method at the PS points in the study area with a period of 384 days and an average amplitude of 19 mm. In addition, groundwater level changes of a water well in the region were modeled, and 0.93 correlation coefficient values were calculated between seasonal InSAR displacement values and water level changes. Thus, using the developed methodology, the relationship between the tectonic movement in the Gediz Graben in Turkey and the seasonal movements and the change in the groundwater level was determined
    corecore