76,813 research outputs found

    Recent Advance in Content-based Image Retrieval: A Literature Survey

    Full text link
    The explosive increase and ubiquitous accessibility of visual data on the Web have led to the prosperity of research activity in image search or retrieval. With the ignorance of visual content as a ranking clue, methods with text search techniques for visual retrieval may suffer inconsistency between the text words and visual content. Content-based image retrieval (CBIR), which makes use of the representation of visual content to identify relevant images, has attracted sustained attention in recent two decades. Such a problem is challenging due to the intention gap and the semantic gap problems. Numerous techniques have been developed for content-based image retrieval in the last decade. The purpose of this paper is to categorize and evaluate those algorithms proposed during the period of 2003 to 2016. We conclude with several promising directions for future research.Comment: 22 page

    Face Recognition: A Novel Multi-Level Taxonomy based Survey

    Full text link
    In a world where security issues have been gaining growing importance, face recognition systems have attracted increasing attention in multiple application areas, ranging from forensics and surveillance to commerce and entertainment. To help understanding the landscape and abstraction levels relevant for face recognition systems, face recognition taxonomies allow a deeper dissection and comparison of the existing solutions. This paper proposes a new, more encompassing and richer multi-level face recognition taxonomy, facilitating the organization and categorization of available and emerging face recognition solutions; this taxonomy may also guide researchers in the development of more efficient face recognition solutions. The proposed multi-level taxonomy considers levels related to the face structure, feature support and feature extraction approach. Following the proposed taxonomy, a comprehensive survey of representative face recognition solutions is presented. The paper concludes with a discussion on current algorithmic and application related challenges which may define future research directions for face recognition.Comment: This paper is a preprint of a paper submitted to IET Biometrics. If accepted, the copy of record will be available at the IET Digital Librar

    Interpretable Partitioned Embedding for Customized Fashion Outfit Composition

    Full text link
    Intelligent fashion outfit composition becomes more and more popular in these years. Some deep learning based approaches reveal competitive composition recently. However, the unexplainable characteristic makes such deep learning based approach cannot meet the the designer, businesses and consumers' urge to comprehend the importance of different attributes in an outfit composition. To realize interpretable and customized fashion outfit compositions, we propose a partitioned embedding network to learn interpretable representations from clothing items. The overall network architecture consists of three components: an auto-encoder module, a supervised attributes module and a multi-independent module. The auto-encoder module serves to encode all useful information into the embedding. In the supervised attributes module, multiple attributes labels are adopted to ensure that different parts of the overall embedding correspond to different attributes. In the multi-independent module, adversarial operation are adopted to fulfill the mutually independent constraint. With the interpretable and partitioned embedding, we then construct an outfit composition graph and an attribute matching map. Given specified attributes description, our model can recommend a ranked list of outfit composition with interpretable matching scores. Extensive experiments demonstrate that 1) the partitioned embedding have unmingled parts which corresponding to different attributes and 2) outfits recommended by our model are more desirable in comparison with the existing methods

    A constrained clustering based approach for matching a collection of feature sets

    Full text link
    In this paper, we consider the problem of finding the feature correspondences among a collection of feature sets, by using their point-wise unary features. This is a fundamental problem in computer vision and pattern recognition, which also closely relates to other areas such as operational research. Different from two-set matching which can be transformed to a quadratic assignment programming task that is known NP-hard, inclusion of merely unary attributes leads to a linear assignment problem for matching two feature sets. This problem has been well studied and there are effective polynomial global optimum solvers such as the Hungarian method. However, it becomes ill-posed when the unary attributes are (heavily) corrupted. The global optimal correspondence concerning the best score defined by the attribute affinity/cost between the two sets can be distinct to the ground truth correspondence since the score function is biased by noises. To combat this issue, we devise a method for matching a collection of feature sets by synergetically exploring the information across the sets. In general, our method can be perceived from a (constrained) clustering perspective: in each iteration, it assigns the features of one set to the clusters formed by the rest of feature sets, and updates the cluster centers in turn. Results on both synthetic data and real images suggest the efficacy of our method against state-of-the-arts.Comment: submission to ICPR 201

    Properties of the Sample Mean in Graph Spaces and the Majorize-Minimize-Mean Algorithm

    Full text link
    One of the most fundamental concepts in statistics is the concept of sample mean. Properties of the sample mean that are well-defined in Euclidean spaces become unwieldy or even unclear in graph spaces. Open problems related to the sample mean of graphs include: non-existence, non-uniqueness, statistical inconsistency, lack of convergence results of mean algorithms, non-existence of midpoints, and disparity to midpoints. We present conditions to resolve all six problems and propose a Majorize-Minimize-Mean (MMM) Algorithm. Experiments on graph datasets representing images and molecules show that the MMM-Algorithm best approximates a sample mean of graphs compared to six other mean algorithms

    Seeded Graph Matching

    Full text link
    Given two graphs, the graph matching problem is to align the two vertex sets so as to minimize the number of adjacency disagreements between the two graphs. The seeded graph matching problem is the graph matching problem when we are first given a partial alignment that we are tasked with completing. In this paper, we modify the state-of-the-art approximate graph matching algorithm "FAQ" of Vogelstein et al. (2015) to make it a fast approximate seeded graph matching algorithm, adapt its applicability to include graphs with differently sized vertex sets, and extend the algorithm so as to provide, for each individual vertex, a nomination list of likely matches. We demonstrate the effectiveness of our algorithm via simulation and real data experiments; indeed, knowledge of even a few seeds can be extremely effective when our seeded graph matching algorithm is used to recover a naturally existing alignment that is only partially observed.Comment: 24 pages, 10 figure

    PVSS: A Progressive Vehicle Search System for Video Surveillance Networks

    Full text link
    This paper is focused on the task of searching for a specific vehicle that appeared in the surveillance networks. Existing methods usually assume the vehicle images are well cropped from the surveillance videos, then use visual attributes, like colors and types, or license plate numbers to match the target vehicle in the image set. However, a complete vehicle search system should consider the problems of vehicle detection, representation, indexing, storage, matching, and so on. Besides, attribute-based search cannot accurately find the same vehicle due to intra-instance changes in different cameras and the extremely uncertain environment. Moreover, the license plates may be misrecognized in surveillance scenes due to the low resolution and noise. In this paper, a Progressive Vehicle Search System, named as PVSS, is designed to solve the above problems. PVSS is constituted of three modules: the crawler, the indexer, and the searcher. The vehicle crawler aims to detect and track vehicles in surveillance videos and transfer the captured vehicle images, metadata and contextual information to the server or cloud. Then multi-grained attributes, such as the visual features and license plate fingerprints, are extracted and indexed by the vehicle indexer. At last, a query triplet with an input vehicle image, the time range, and the spatial scope is taken as the input by the vehicle searcher. The target vehicle will be searched in the database by a progressive process. Extensive experiments on the public dataset from a real surveillance network validate the effectiveness of the PVSS

    SOSNet: Second Order Similarity Regularization for Local Descriptor Learning

    Full text link
    Despite the fact that Second Order Similarity (SOS) has been used with significant success in tasks such as graph matching and clustering, it has not been exploited for learning local descriptors. In this work, we explore the potential of SOS in the field of descriptor learning by building upon the intuition that a positive pair of matching points should exhibit similar distances with respect to other points in the embedding space. Thus, we propose a novel regularization term, named Second Order Similarity Regularization (SOSR), that follows this principle. By incorporating SOSR into training, our learned descriptor achieves state-of-the-art performance on several challenging benchmarks containing distinct tasks ranging from local patch retrieval to structure from motion. Furthermore, by designing a von Mises-Fischer distribution based evaluation method, we link the utilization of the descriptor space to the matching performance, thus demonstrating the effectiveness of our proposed SOSR. Extensive experimental results, empirical evidence, and in-depth analysis are provided, indicating that SOSR can significantly boost the matching performance of the learned descriptor

    The Unconstrained Ear Recognition Challenge

    Full text link
    In this paper we present the results of the Unconstrained Ear Recognition Challenge (UERC), a group benchmarking effort centered around the problem of person recognition from ear images captured in uncontrolled conditions. The goal of the challenge was to assess the performance of existing ear recognition techniques on a challenging large-scale dataset and identify open problems that need to be addressed in the future. Five groups from three continents participated in the challenge and contributed six ear recognition techniques for the evaluation, while multiple baselines were made available for the challenge by the UERC organizers. A comprehensive analysis was conducted with all participating approaches addressing essential research questions pertaining to the sensitivity of the technology to head rotation, flipping, gallery size, large-scale recognition and others. The top performer of the UERC was found to ensure robust performance on a smaller part of the dataset (with 180 subjects) regardless of image characteristics, but still exhibited a significant performance drop when the entire dataset comprising 3,704 subjects was used for testing.Comment: International Joint Conference on Biometrics 201

    Graph Kernels based on High Order Graphlet Parsing and Hashing

    Full text link
    Graph-based methods are known to be successful in many machine learning and pattern classification tasks. These methods consider semi-structured data as graphs where nodes correspond to primitives (parts, interest points, segments, etc.) and edges characterize the relationships between these primitives. However, these non-vectorial graph data cannot be straightforwardly plugged into off-the-shelf machine learning algorithms without a preliminary step of -- explicit/implicit -- graph vectorization and embedding. This embedding process should be resilient to intra-class graph variations while being highly discriminant. In this paper, we propose a novel high-order stochastic graphlet embedding (SGE) that maps graphs into vector spaces. Our main contribution includes a new stochastic search procedure that efficiently parses a given graph and extracts/samples unlimitedly high-order graphlets. We consider these graphlets, with increasing orders, to model local primitives as well as their increasingly complex interactions. In order to build our graph representation, we measure the distribution of these graphlets into a given graph, using particular hash functions that efficiently assign sampled graphlets into isomorphic sets with a very low probability of collision. When combined with maximum margin classifiers, these graphlet-based representations have positive impact on the performance of pattern comparison and recognition as corroborated through extensive experiments using standard benchmark databases.Comment: arXiv admin note: substantial text overlap with arXiv:1702.0015
    corecore