36,661 research outputs found

    Multiclass Data Segmentation using Diffuse Interface Methods on Graphs

    Full text link
    We present two graph-based algorithms for multiclass segmentation of high-dimensional data. The algorithms use a diffuse interface model based on the Ginzburg-Landau functional, related to total variation compressed sensing and image processing. A multiclass extension is introduced using the Gibbs simplex, with the functional's double-well potential modified to handle the multiclass case. The first algorithm minimizes the functional using a convex splitting numerical scheme. The second algorithm is a uses a graph adaptation of the classical numerical Merriman-Bence-Osher (MBO) scheme, which alternates between diffusion and thresholding. We demonstrate the performance of both algorithms experimentally on synthetic data, grayscale and color images, and several benchmark data sets such as MNIST, COIL and WebKB. We also make use of fast numerical solvers for finding the eigenvectors and eigenvalues of the graph Laplacian, and take advantage of the sparsity of the matrix. Experiments indicate that the results are competitive with or better than the current state-of-the-art multiclass segmentation algorithms.Comment: 14 page

    A Consistent Histogram Estimator for Exchangeable Graph Models

    Full text link
    Exchangeable graph models (ExGM) subsume a number of popular network models. The mathematical object that characterizes an ExGM is termed a graphon. Finding scalable estimators of graphons, provably consistent, remains an open issue. In this paper, we propose a histogram estimator of a graphon that is provably consistent and numerically efficient. The proposed estimator is based on a sorting-and-smoothing (SAS) algorithm, which first sorts the empirical degree of a graph, then smooths the sorted graph using total variation minimization. The consistency of the SAS algorithm is proved by leveraging sparsity concepts from compressed sensing.Comment: 28 pages, 5 figure

    An Adaptive Total Variation Algorithm for Computing the Balanced Cut of a Graph

    Get PDF
    We propose an adaptive version of the total variation algorithm proposed in [3] for computing the balanced cut of a graph. The algorithm from [3] used a sequence of inner total variation minimizations to guarantee descent of the balanced cut energy as well as convergence of the algorithm. In practice the total variation minimization step is never solved exactly. Instead, an accuracy parameter is specified and the total variation minimization terminates once this level of accuracy is reached. The choice of this parameter can vastly impact both the computational time of the overall algorithm as well as the accuracy of the result. Moreover, since the total variation minimization step is not solved exactly, the algorithm is not guarantied to be monotonic. In the present work we introduce a new adaptive stopping condition for the total variation minimization that guarantees monotonicity. This results in an algorithm that is actually monotonic in practice and is also significantly faster than previous, non-adaptive algorithms

    An Algorithmic Theory of Dependent Regularizers, Part 1: Submodular Structure

    Full text link
    We present an exploration of the rich theoretical connections between several classes of regularized models, network flows, and recent results in submodular function theory. This work unifies key aspects of these problems under a common theory, leading to novel methods for working with several important models of interest in statistics, machine learning and computer vision. In Part 1, we review the concepts of network flows and submodular function optimization theory foundational to our results. We then examine the connections between network flows and the minimum-norm algorithm from submodular optimization, extending and improving several current results. This leads to a concise representation of the structure of a large class of pairwise regularized models important in machine learning, statistics and computer vision. In Part 2, we describe the full regularization path of a class of penalized regression problems with dependent variables that includes the graph-guided LASSO and total variation constrained models. This description also motivates a practical algorithm. This allows us to efficiently find the regularization path of the discretized version of TV penalized models. Ultimately, our new algorithms scale up to high-dimensional problems with millions of variables

    Multiclass Semi-Supervised Learning on Graphs using Ginzburg-Landau Functional Minimization

    Full text link
    We present a graph-based variational algorithm for classification of high-dimensional data, generalizing the binary diffuse interface model to the case of multiple classes. Motivated by total variation techniques, the method involves minimizing an energy functional made up of three terms. The first two terms promote a stepwise continuous classification function with sharp transitions between classes, while preserving symmetry among the class labels. The third term is a data fidelity term, allowing us to incorporate prior information into the model in a semi-supervised framework. The performance of the algorithm on synthetic data, as well as on the COIL and MNIST benchmark datasets, is competitive with state-of-the-art graph-based multiclass segmentation methods.Comment: 16 pages, to appear in Springer's Lecture Notes in Computer Science volume "Pattern Recognition Applications and Methods 2013", part of series on Advances in Intelligent and Soft Computin

    Reflection methods for user-friendly submodular optimization

    Get PDF
    Recently, it has become evident that submodularity naturally captures widely occurring concepts in machine learning, signal processing and computer vision. Consequently, there is need for efficient optimization procedures for submodular functions, especially for minimization problems. While general submodular minimization is challenging, we propose a new method that exploits existing decomposability of submodular functions. In contrast to previous approaches, our method is neither approximate, nor impractical, nor does it need any cumbersome parameter tuning. Moreover, it is easy to implement and parallelize. A key component of our method is a formulation of the discrete submodular minimization problem as a continuous best approximation problem that is solved through a sequence of reflections, and its solution can be easily thresholded to obtain an optimal discrete solution. This method solves both the continuous and discrete formulations of the problem, and therefore has applications in learning, inference, and reconstruction. In our experiments, we illustrate the benefits of our method on two image segmentation tasks.Comment: Neural Information Processing Systems (NIPS), \'Etats-Unis (2013
    • …
    corecore