1,737 research outputs found

    Graph Laplacian Spectrum and Primary Frequency Regulation

    Get PDF
    We present a framework based on spectral graph theory that captures the interplay among network topology, system inertia, and generator and load damping in determining the overall grid behavior and performance. Specifically, we show that the impact of network topology on a power system can be quantified through the network Laplacian eigenvalues, and such eigenvalues determine the grid robustness against low frequency disturbances. Moreover, we can explicitly decompose the frequency signal along scaled Laplacian eigenvectors when damping-inertia ratios are uniform across buses. The insight revealed by this framework partially explains why load-side participation in frequency regulation not only makes the system respond faster, but also helps lower the system nadir after a disturbance. Finally, by presenting a new controller specifically tailored to suppress high frequency disturbances, we demonstrate that our results can provide useful guidelines in the controller design for load-side primary frequency regulation. This improved controller is simulated on the IEEE 39-bus New England interconnection system to illustrate its robustness against high frequency oscillations compared to both the conventional droop control and a recent controller design

    Graph Laplacian Spectrum and Primary Frequency Regulation

    Get PDF
    We present a framework based on spectral graph theory that captures the interplay among network topology, system inertia, and generator and load damping in determining the overall grid behavior and performance. Specifically, we show that the impact of network topology on a power system can be quantified through the network Laplacian eigenvalues, and such eigenvalues determine the grid robustness against low frequency disturbances. Moreover, we can explicitly decompose the frequency signal along scaled Laplacian eigenvectors when damping-inertia ratios are uniform across buses. The insight revealed by this framework partially explains why load-side participation in frequency regulation not only makes the system respond faster, but also helps lower the system nadir after a disturbance. Finally, by presenting a new controller specifically tailored to suppress high frequency disturbances, we demonstrate that our results can provide useful guidelines in the controller design for load-side primary frequency regulation. This improved controller is simulated on the IEEE 39-bus New England interconnection system to illustrate its robustness against high frequency oscillations compared to both the conventional droop control and a recent controller design

    Gains in Power from Structured Two-Sample Tests of Means on Graphs

    Get PDF
    We consider multivariate two-sample tests of means, where the location shift between the two populations is expected to be related to a known graph structure. An important application of such tests is the detection of differentially expressed genes between two patient populations, as shifts in expression levels are expected to be coherent with the structure of graphs reflecting gene properties such as biological process, molecular function, regulation, or metabolism. For a fixed graph of interest, we demonstrate that accounting for graph structure can yield more powerful tests under the assumption of smooth distribution shift on the graph. We also investigate the identification of non-homogeneous subgraphs of a given large graph, which poses both computational and multiple testing problems. The relevance and benefits of the proposed approach are illustrated on synthetic data and on breast cancer gene expression data analyzed in context of KEGG pathways

    An internal model approach to (optimal) frequency regulation in power grids with time-varying voltages

    Get PDF
    This paper studies the problem of frequency regulation in power grids under unknown and possible time-varying load changes, while minimizing the generation costs. We formulate this problem as an output agreement problem for distribution networks and address it using incremental passivity and distributed internal-model-based controllers. Incremental passivity enables a systematic approach to study convergence to the steady state with zero frequency deviation and to design the controller in the presence of time-varying voltages, whereas the internal-model principle is applied to tackle the uncertain nature of the loads.Comment: 16 pages. Abridged version appeared in the Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, MTNS 2014, Groningen, the Netherlands. Submitted in December 201
    • …
    corecore