621 research outputs found

    Enumeration of PLCP-orientations of the 4-cube

    Full text link
    The linear complementarity problem (LCP) provides a unified approach to many problems such as linear programs, convex quadratic programs, and bimatrix games. The general LCP is known to be NP-hard, but there are some promising results that suggest the possibility that the LCP with a P-matrix (PLCP) may be polynomial-time solvable. However, no polynomial-time algorithm for the PLCP has been found yet and the computational complexity of the PLCP remains open. Simple principal pivoting (SPP) algorithms, also known as Bard-type algorithms, are candidates for polynomial-time algorithms for the PLCP. In 1978, Stickney and Watson interpreted SPP algorithms as a family of algorithms that seek the sink of unique-sink orientations of nn-cubes. They performed the enumeration of the arising orientations of the 33-cube, hereafter called PLCP-orientations. In this paper, we present the enumeration of PLCP-orientations of the 44-cube.The enumeration is done via construction of oriented matroids generalizing P-matrices and realizability classification of oriented matroids.Some insights obtained in the computational experiments are presented as well

    Dynamic Complexity of Planar 3-connected Graph Isomorphism

    Full text link
    Dynamic Complexity (as introduced by Patnaik and Immerman) tries to express how hard it is to update the solution to a problem when the input is changed slightly. It considers the changes required to some stored data structure (possibly a massive database) as small quantities of data (or a tuple) are inserted or deleted from the database (or a structure over some vocabulary). The main difference from previous notions of dynamic complexity is that instead of treating the update quantitatively by finding the the time/space trade-offs, it tries to consider the update qualitatively, by finding the complexity class in which the update can be expressed (or made). In this setting, DynFO, or Dynamic First-Order, is one of the smallest and the most natural complexity class (since SQL queries can be expressed in First-Order Logic), and contains those problems whose solutions (or the stored data structure from which the solution can be found) can be updated in First-Order Logic when the data structure undergoes small changes. Etessami considered the problem of isomorphism in the dynamic setting, and showed that Tree Isomorphism can be decided in DynFO. In this work, we show that isomorphism of Planar 3-connected graphs can be decided in DynFO+ (which is DynFO with some polynomial precomputation). We maintain a canonical description of 3-connected Planar graphs by maintaining a database which is accessed and modified by First-Order queries when edges are added to or deleted from the graph. We specifically exploit the ideas of Breadth-First Search and Canonical Breadth-First Search to prove the results. We also introduce a novel method for canonizing a 3-connected planar graph in First-Order Logic from Canonical Breadth-First Search Trees

    Computational Complexity and Graph Isomorphism

    Get PDF
    The graph isomorphism problem is the computational problem of determining whether two ļ¬nite graphs are isomorphic, that is, structurally the same. The complexity of graph isomorphism is an open problem and it is one of the few problems in NP which is neither known to be solvable in polynomial time nor NP-complete. It is one of the most researched open problems in theoretical computer science. The foundations of computability theory are in recursion theory and in recursive functions which are an older model of computation than Turing machines. In this masterā€™s thesis we discuss the basics of the recursion theory and the main theorems starting from the axioms. The aim of the second chapter is to define the most important T- and m-reductions and the implication hierarchy between reductions. Different variations of Turing machines include the nondeterministic and oracle Turing machines. They are discussed in the third chapter. A hierarchy of different complexity classes can be created by reducing the available computational resources of recursive functions. The members of this hierarchy include for instance P and NP. There are hundreds of known complexity classes and in this work the most important ones regarding graph isomorphism are introduced. Boolean circuits are a different method for approaching computability. Some main results and complexity classes of circuit complexity are discussed in the fourth chapter. The aim is to show that graph isomorphism is hard for the class DET. Graph isomorphism is known to belong to the classes coAM and SPP. These classes are introduced in the fifth chapter by using theory of probabilistic classes, polynomial hierarchy, interactive proof systems and Arthur-Merlin games. Polynomial hierarchy collapses to its second level if GI is NP-complete
    • ā€¦
    corecore