76,071 research outputs found

    TopCom: Index for Shortest Distance Query in Directed Graph

    Get PDF
    Finding shortest distance between two vertices in a graph is an important problem due to its numerous applications in diverse domains, including geo-spatial databases, social network analysis, and information retrieval. Classical algorithms (such as, Dijkstra) solve this problem in polynomial time, but these algorithms cannot provide real-time response for a large number of bursty queries on a large graph. So, indexing based solutions that pre-process the graph for efficiently answering (exactly or approximately) a large number of distance queries in real-time is becoming increasingly popular. Existing solutions have varying performance in terms of index size, index building time, query time, and accuracy. In this work, we propose T OP C OM , a novel indexing-based solution for exactly answering distance queries. Our experiments with two of the existing state-of-the-art methods (IS-Label and TreeMap) show the superiority of T OP C OM over these two methods considering scalability and query time. Besides, indexing of T OP C OM exploits the DAG (directed acyclic graph) structure in the graph, which makes it significantly faster than the existing methods if the SCCs (strongly connected component) of the input graph are relatively small

    Efficient Subgraph Matching on Billion Node Graphs

    Full text link
    The ability to handle large scale graph data is crucial to an increasing number of applications. Much work has been dedicated to supporting basic graph operations such as subgraph matching, reachability, regular expression matching, etc. In many cases, graph indices are employed to speed up query processing. Typically, most indices require either super-linear indexing time or super-linear indexing space. Unfortunately, for very large graphs, super-linear approaches are almost always infeasible. In this paper, we study the problem of subgraph matching on billion-node graphs. We present a novel algorithm that supports efficient subgraph matching for graphs deployed on a distributed memory store. Instead of relying on super-linear indices, we use efficient graph exploration and massive parallel computing for query processing. Our experimental results demonstrate the feasibility of performing subgraph matching on web-scale graph data.Comment: VLDB201

    On the Sparing Number of Certain Graph Structures

    Get PDF
    An integer additive set-indexer is defined as an injective function f:V(G)→2N0f:V(G)\rightarrow 2^{\mathbb{N}_0} such that the induced function gf:E(G)→2N0g_f:E(G) \rightarrow 2^{\mathbb{N}_0} defined by gf(uv)=f(u)+f(v)g_f (uv) = f(u)+ f(v) is also injective. An IASI ff is said to be a weak IASI if ∣gf(uv)∣=max(∣f(u)∣,∣f(v)∣)|g_f(uv)|=max(|f(u)|,|f(v)|) for all u,v∈V(G)u,v\in V(G). A graph which admits a weak IASI may be called a weak IASI graph. The set-indexing number of an element of a graph GG, a vertex or an edge, is the cardinality of its set-labels. A mono-indexed element of a graph is an element of GG which has the set-indexing number 11. The Sparing number of a graph GG is the minimum number of mono-indexed edges required for a graph GG to admit a weak IASI. In this paper, we introduce the notion of conjoined graphs, entwined graphs and floral graphs and study further about the sparing number of various finite graph operations as extensions to our earlier studies and provide some useful results on these types of graph structures.Comment: 12 pages, 5 figures. arXiv admin note: text overlap with arXiv:1310.609

    Towards Scalable Visual Exploration of Very Large RDF Graphs

    Full text link
    In this paper, we outline our work on developing a disk-based infrastructure for efficient visualization and graph exploration operations over very large graphs. The proposed platform, called graphVizdb, is based on a novel technique for indexing and storing the graph. Particularly, the graph layout is indexed with a spatial data structure, i.e., an R-tree, and stored in a database. In runtime, user operations are translated into efficient spatial operations (i.e., window queries) in the backend.Comment: 12th Extended Semantic Web Conference (ESWC 2015

    Performance and scalability of indexed subgraph query processing methods

    Get PDF
    Graph data management systems have become very popular as graphs are the natural data model for many applications. One of the main problems addressed by these systems is subgraph query processing; i.e., given a query graph, return all graphs that contain the query. The naive method for processing such queries is to perform a subgraph isomorphism test against each graph in the dataset. This obviously does not scale, as subgraph isomorphism is NP-Complete. Thus, many indexing methods have been proposed to reduce the number of candidate graphs that have to underpass the subgraph isomorphism test. In this paper, we identify a set of key factors-parameters, that influence the performance of related methods: namely, the number of nodes per graph, the graph density, the number of distinct labels, the number of graphs in the dataset, and the query graph size. We then conduct comprehensive and systematic experiments that analyze the sensitivity of the various methods on the values of the key parameters. Our aims are twofold: first to derive conclusions about the algorithms’ relative performance, and, second, to stress-test all algorithms, deriving insights as to their scalability, and highlight how both performance and scalability depend on the above factors. We choose six wellestablished indexing methods, namely Grapes, CT-Index, GraphGrepSX, gIndex, Tree+∆, and gCode, as representative approaches of the overall design space, including the most recent and best performing methods. We report on their index construction time and index size, and on query processing performance in terms of time and false positive ratio. We employ both real and synthetic datasets. Specifi- cally, four real datasets of different characteristics are used: AIDS, PDBS, PCM, and PPI. In addition, we generate a large number of synthetic graph datasets, empowering us to systematically study the algorithms’ performance and scalability versus the aforementioned key parameters

    Graphulo Implementation of Server-Side Sparse Matrix Multiply in the Accumulo Database

    Full text link
    The Apache Accumulo database excels at distributed storage and indexing and is ideally suited for storing graph data. Many big data analytics compute on graph data and persist their results back to the database. These graph calculations are often best performed inside the database server. The GraphBLAS standard provides a compact and efficient basis for a wide range of graph applications through a small number of sparse matrix operations. In this article, we implement GraphBLAS sparse matrix multiplication server-side by leveraging Accumulo's native, high-performance iterators. We compare the mathematics and performance of inner and outer product implementations, and show how an outer product implementation achieves optimal performance near Accumulo's peak write rate. We offer our work as a core component to the Graphulo library that will deliver matrix math primitives for graph analytics within Accumulo.Comment: To be presented at IEEE HPEC 2015: http://www.ieee-hpec.org
    • …
    corecore