1,271 research outputs found

    Graph Convolutional Neural Networks via Motif-based Attention

    Full text link
    Many real-world problems can be represented as graph-based learning problems. In this paper, we propose a novel framework for learning spatial and attentional convolution neural networks on arbitrary graphs. Different from previous convolutional neural networks on graphs, we first design a motif-matching guided subgraph normalization method to capture neighborhood information. Then we implement subgraph-level self-attentional layers to learn different importances from different subgraphs to solve graph classification problems. Analogous to image-based attentional convolution networks that operate on locally connected and weighted regions of the input, we also extend graph normalization from one-dimensional node sequence to two-dimensional node grid by leveraging motif-matching, and design self-attentional layers without requiring any kinds of cost depending on prior knowledge of the graph structure. Our results on both bioinformatics and social network datasets show that we can significantly improve graph classification benchmarks over traditional graph kernel and existing deep models

    Higher-order Graph Convolutional Networks

    Full text link
    Following the success of deep convolutional networks in various vision and speech related tasks, researchers have started investigating generalizations of the well-known technique for graph-structured data. A recently-proposed method called Graph Convolutional Networks has been able to achieve state-of-the-art results in the task of node classification. However, since the proposed method relies on localized first-order approximations of spectral graph convolutions, it is unable to capture higher-order interactions between nodes in the graph. In this work, we propose a motif-based graph attention model, called Motif Convolutional Networks (MCNs), which generalizes past approaches by using weighted multi-hop motif adjacency matrices to capture higher-order neighborhoods. A novel attention mechanism is used to allow each individual node to select the most relevant neighborhood to apply its filter. Experiments show that our proposed method is able to achieve state-of-the-art results on the semi-supervised node classification task

    Motif-based Convolutional Neural Network on Graphs

    Full text link
    This paper introduces a generalization of Convolutional Neural Networks (CNNs) to graphs with irregular linkage structures, especially heterogeneous graphs with typed nodes and schemas. We propose a novel spatial convolution operation to model the key properties of local connectivity and translation invariance, using high-order connection patterns or motifs. We develop a novel deep architecture Motif-CNN that employs an attention model to combine the features extracted from multiple patterns, thus effectively capturing high-order structural and feature information. Our experiments on semi-supervised node classification on real-world social networks and multiple representative heterogeneous graph datasets indicate significant gains of 6-21% over existing graph CNNs and other state-of-the-art techniques

    Dual-Primal Graph Convolutional Networks

    Full text link
    In recent years, there has been a surge of interest in developing deep learning methods for non-Euclidean structured data such as graphs. In this paper, we propose Dual-Primal Graph CNN, a graph convolutional architecture that alternates convolution-like operations on the graph and its dual. Our approach allows to learn both vertex- and edge features and generalizes the previous graph attention (GAT) model. We provide extensive experimental validation showing state-of-the-art results on a variety of tasks tested on established graph benchmarks, including CORA and Citeseer citation networks as well as MovieLens, Flixter, Douban and Yahoo Music graph-guided recommender systems

    Link Prediction via Higher-Order Motif Features

    Full text link
    Link prediction requires predicting which new links are likely to appear in a graph. Being able to predict unseen links with good accuracy has important applications in several domains such as social media, security, transportation, and recommendation systems. A common approach is to use features based on the common neighbors of an unconnected pair of nodes to predict whether the pair will form a link in the future. In this paper, we present an approach for link prediction that relies on higher-order analysis of the graph topology, well beyond common neighbors. We treat the link prediction problem as a supervised classification problem, and we propose a set of features that depend on the patterns or motifs that a pair of nodes occurs in. By using motifs of sizes 3, 4, and 5, our approach captures a high level of detail about the graph topology within the neighborhood of the pair of nodes, which leads to a higher classification accuracy. In addition to proposing the use of motif-based features, we also propose two optimizations related to constructing the classification dataset from the graph. First, to ensure that positive and negative examples are treated equally when extracting features, we propose adding the negative examples to the graph as an alternative to the common approach of removing the positive ones. Second, we show that it is important to control for the shortest-path distance when sampling pairs of nodes to form negative examples, since the difficulty of prediction varies with the shortest-path distance. We experimentally demonstrate that using off-the-shelf classifiers with a well constructed classification dataset results in up to 10 percentage points increase in accuracy over prior topology-based and feature learning methods.Comment: Extended version of paper that appears in ECML/PKDD 201

    Graph R-CNN for Scene Graph Generation

    Full text link
    We propose a novel scene graph generation model called Graph R-CNN, that is both effective and efficient at detecting objects and their relations in images. Our model contains a Relation Proposal Network (RePN) that efficiently deals with the quadratic number of potential relations between objects in an image. We also propose an attentional Graph Convolutional Network (aGCN) that effectively captures contextual information between objects and relations. Finally, we introduce a new evaluation metric that is more holistic and realistic than existing metrics. We report state-of-the-art performance on scene graph generation as evaluated using both existing and our proposed metrics.Comment: 16 pages, ECCV 2018 camera read

    MeshGAN: Non-linear 3D Morphable Models of Faces

    Full text link
    Generative Adversarial Networks (GANs) are currently the method of choice for generating visual data. Certain GAN architectures and training methods have demonstrated exceptional performance in generating realistic synthetic images (in particular, of human faces). However, for 3D object, GANs still fall short of the success they have had with images. One of the reasons is due to the fact that so far GANs have been applied as 3D convolutional architectures to discrete volumetric representations of 3D objects. In this paper, we propose the first intrinsic GANs architecture operating directly on 3D meshes (named as MeshGAN). Both quantitative and qualitative results are provided to show that MeshGAN can be used to generate high-fidelity 3D face with rich identities and expressions

    Integrating Semantic and Structural Information with Graph Convolutional Network for Controversy Detection

    Full text link
    Identifying controversial posts on social media is a fundamental task for mining public sentiment, assessing the influence of events, and alleviating the polarized views. However, existing methods fail to 1) effectively incorporate the semantic information from content-related posts; 2) preserve the structural information for reply relationship modeling; 3) properly handle posts from topics dissimilar to those in the training set. To overcome the first two limitations, we propose Topic-Post-Comment Graph Convolutional Network (TPC-GCN), which integrates the information from the graph structure and content of topics, posts, and comments for post-level controversy detection. As to the third limitation, we extend our model to Disentangled TPC-GCN (DTPC-GCN), to disentangle topic-related and topic-unrelated features and then fuse dynamically. Extensive experiments on two real-world datasets demonstrate that our models outperform existing methods. Analysis of the results and cases proves that our models can integrate both semantic and structural information with significant generalizability.Comment: 12 pages, 3 figures, 6 tables; To appear in ACL 2020 (long paper

    GraphNAS: Graph Neural Architecture Search with Reinforcement Learning

    Full text link
    Graph Neural Networks (GNNs) have been popularly used for analyzing non-Euclidean data such as social network data and biological data. Despite their success, the design of graph neural networks requires a lot of manual work and domain knowledge. In this paper, we propose a Graph Neural Architecture Search method (GraphNAS for short) that enables automatic search of the best graph neural architecture based on reinforcement learning. Specifically, GraphNAS first uses a recurrent network to generate variable-length strings that describe the architectures of graph neural networks, and then trains the recurrent network with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation data set. Extensive experimental results on node classification tasks in both transductive and inductive learning settings demonstrate that GraphNAS can achieve consistently better performance on the Cora, Citeseer, Pubmed citation network, and protein-protein interaction network. On node classification tasks, GraphNAS can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy

    PeerNets: Exploiting Peer Wisdom Against Adversarial Attacks

    Full text link
    Deep learning systems have become ubiquitous in many aspects of our lives. Unfortunately, it has been shown that such systems are vulnerable to adversarial attacks, making them prone to potential unlawful uses. Designing deep neural networks that are robust to adversarial attacks is a fundamental step in making such systems safer and deployable in a broader variety of applications (e.g. autonomous driving), but more importantly is a necessary step to design novel and more advanced architectures built on new computational paradigms rather than marginally building on the existing ones. In this paper we introduce PeerNets, a novel family of convolutional networks alternating classical Euclidean convolutions with graph convolutions to harness information from a graph of peer samples. This results in a form of non-local forward propagation in the model, where latent features are conditioned on the global structure induced by the graph, that is up to 3 times more robust to a variety of white- and black-box adversarial attacks compared to conventional architectures with almost no drop in accuracy
    corecore