45,203 research outputs found

    Graph Complexity and Slice Functions

    Full text link
    Abstract. A graph-theoretic approach to study the complexity of Boolean functions was initiated by Pudlák, Rödl, and Savický [PRS] by defining models of computation on graphs. These models generalize well-known models of Boolean complexity such as circuits, branching programs, and two-party communication complexity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42364/1/30360071.pd

    Reconciling Synthesis and Decomposition: A Composite Approach to Capability Identification

    Full text link
    Stakeholders' expectations and technology constantly evolve during the lengthy development cycles of a large-scale computer based system. Consequently, the traditional approach of baselining requirements results in an unsatisfactory system because it is ill-equipped to accommodate such change. In contrast, systems constructed on the basis of Capabilities are more change-tolerant; Capabilities are functional abstractions that are neither as amorphous as user needs nor as rigid as system requirements. Alternatively, Capabilities are aggregates that capture desired functionality from the users' needs, and are designed to exhibit desirable software engineering characteristics of high cohesion, low coupling and optimum abstraction levels. To formulate these functional abstractions we develop and investigate two algorithms for Capability identification: Synthesis and Decomposition. The synthesis algorithm aggregates detailed rudimentary elements of the system to form Capabilities. In contrast, the decomposition algorithm determines Capabilities by recursively partitioning the overall mission of the system into more detailed entities. Empirical analysis on a small computer based library system reveals that neither approach is sufficient by itself. However, a composite algorithm based on a complementary approach reconciling the two polar perspectives results in a more feasible set of Capabilities. In particular, the composite algorithm formulates Capabilities using the cohesion and coupling measures as defined by the decomposition algorithm and the abstraction level as determined by the synthesis algorithm.Comment: This paper appears in the 14th Annual IEEE International Conference and Workshop on the Engineering of Computer Based Systems (ECBS); 10 pages, 9 figure

    One-way permutations, computational asymmetry and distortion

    Get PDF
    Computational asymmetry, i.e., the discrepancy between the complexity of transformations and the complexity of their inverses, is at the core of one-way transformations. We introduce a computational asymmetry function that measures the amount of one-wayness of permutations. We also introduce the word-length asymmetry function for groups, which is an algebraic analogue of computational asymmetry. We relate boolean circuits to words in a Thompson monoid, over a fixed generating set, in such a way that circuit size is equal to word-length. Moreover, boolean circuits have a representation in terms of elements of a Thompson group, in such a way that circuit size is polynomially equivalent to word-length. We show that circuits built with gates that are not constrained to have fixed-length inputs and outputs, are at most quadratically more compact than circuits built from traditional gates (with fixed-length inputs and outputs). Finally, we show that the computational asymmetry function is closely related to certain distortion functions: The computational asymmetry function is polynomially equivalent to the distortion of the path length in Schreier graphs of certain Thompson groups, compared to the path length in Cayley graphs of certain Thompson monoids. We also show that the results of Razborov and others on monotone circuit complexity lead to exponential lower bounds on certain distortions.Comment: 33 page

    Attribute Value Reordering For Efficient Hybrid OLAP

    Get PDF
    The normalization of a data cube is the ordering of the attribute values. For large multidimensional arrays where dense and sparse chunks are stored differently, proper normalization can lead to improved storage efficiency. We show that it is NP-hard to compute an optimal normalization even for 1x3 chunks, although we find an exact algorithm for 1x2 chunks. When dimensions are nearly statistically independent, we show that dimension-wise attribute frequency sorting is an optimal normalization and takes time O(d n log(n)) for data cubes of size n^d. When dimensions are not independent, we propose and evaluate several heuristics. The hybrid OLAP (HOLAP) storage mechanism is already 19%-30% more efficient than ROLAP, but normalization can improve it further by 9%-13% for a total gain of 29%-44% over ROLAP

    The model checking problem for intuitionistic propositional logic with one variable is AC1-complete

    Full text link
    We show that the model checking problem for intuitionistic propositional logic with one variable is complete for logspace-uniform AC1. As basic tool we use the connection between intuitionistic logic and Heyting algebra, and investigate its complexity theoretical aspects. For superintuitionistic logics with one variable, we obtain NC1-completeness for the model checking problem.Comment: A preliminary version of this work was presented at STACS 2011. 19 pages, 3 figure

    The model checking fingerprints of CTL operators

    Full text link
    The aim of this study is to understand the inherent expressive power of CTL operators. We investigate the complexity of model checking for all CTL fragments with one CTL operator and arbitrary Boolean operators. This gives us a fingerprint of each CTL operator. The comparison between the fingerprints yields a hierarchy of the operators that mirrors their strength with respect to model checking

    Identifiability and transportability in dynamic causal networks

    Get PDF
    In this paper we propose a causal analog to the purely observational Dynamic Bayesian Networks, which we call Dynamic Causal Networks. We provide a sound and complete algorithm for identification of Dynamic Causal Networks, namely, for computing the effect of an intervention or experiment, based on passive observations only, whenever possible. We note the existence of two types of confounder variables that affect in substantially different ways the identification procedures, a distinction with no analog in either Dynamic Bayesian Networks or standard causal graphs. We further propose a procedure for the transportability of causal effects in Dynamic Causal Network settings, where the result of causal experiments in a source domain may be used for the identification of causal effects in a target domain.Preprin

    Time and Parallelizability Results for Parity Games with Bounded Tree and DAG Width

    Full text link
    Parity games are a much researched class of games in NP intersect CoNP that are not known to be in P. Consequently, researchers have considered specialised algorithms for the case where certain graph parameters are small. In this paper, we study parity games on graphs with bounded treewidth, and graphs with bounded DAG width. We show that parity games with bounded DAG width can be solved in O(n^(k+3) k^(k + 2) (d + 1)^(3k + 2)) time, where n, k, and d are the size, treewidth, and number of priorities in the parity game. This is an improvement over the previous best algorithm, given by Berwanger et al., which runs in n^O(k^2) time. We also show that, if a tree decomposition is provided, then parity games with bounded treewidth can be solved in O(n k^(k + 5) (d + 1)^(3k + 5)) time. This improves over previous best algorithm, given by Obdrzalek, which runs in O(n d^(2(k+1)^2)) time. Our techniques can also be adapted to show that the problem of solving parity games with bounded treewidth lies in the complexity class NC^2, which is the class of problems that can be efficiently parallelized. This is in stark contrast to the general parity game problem, which is known to be P-hard, and thus unlikely to be contained in NC
    • …
    corecore