3,599 research outputs found

    The Proportional Coloring Problem: Optimizing Buffers in Radio Mesh Networks

    Get PDF
    International audienceIn this paper, we consider a new edge coloring problem to model call scheduling op- timization issues in wireless mesh networks: the proportional coloring. It consists in finding a minimum cost edge coloring of a graph which preserves the propor- tion given by the weights associated to each of its edges. We show that deciding if a weighted graph admits a proportional coloring is pseudo-polynomial while de- termining its proportional chromatic index is NP-hard. We then give lower and upper bounds for this parameter that can be computed in pseudo-polynomial time. We finally identify a class of graphs and a class of weighted graphs for which the proportional chromatic index can be exactly determined

    Scheduling of unit-length jobs with bipartite incompatibility graphs on four uniform machines

    Full text link
    In the paper we consider the problem of scheduling nn identical jobs on 4 uniform machines with speeds s1≥s2≥s3≥s4,s_1 \geq s_2 \geq s_3 \geq s_4, respectively. Our aim is to find a schedule with a minimum possible length. We assume that jobs are subject to some kind of mutual exclusion constraints modeled by a bipartite incompatibility graph of degree Δ\Delta, where two incompatible jobs cannot be processed on the same machine. We show that the problem is NP-hard even if s1=s2=s3s_1=s_2=s_3. If, however, Δ≤4\Delta \leq 4 and s1≥12s2s_1 \geq 12 s_2, s2=s3=s4s_2=s_3=s_4, then the problem can be solved to optimality in time O(n1.5)O(n^{1.5}). The same algorithm returns a solution of value at most 2 times optimal provided that s1≥2s2s_1 \geq 2s_2. Finally, we study the case s1≥s2≥s3=s4s_1 \geq s_2 \geq s_3=s_4 and give an O(n1.5)O(n^{1.5})-time 32/1532/15-approximation algorithm in all such situations
    • …
    corecore