209 research outputs found

    Making Code Voting Secure against Insider Threats using Unconditionally Secure MIX Schemes and Human PSMT Protocols

    Full text link
    Code voting was introduced by Chaum as a solution for using a possibly infected-by-malware device to cast a vote in an electronic voting application. Chaum's work on code voting assumed voting codes are physically delivered to voters using the mail system, implicitly requiring to trust the mail system. This is not necessarily a valid assumption to make - especially if the mail system cannot be trusted. When conspiring with the recipient of the cast ballots, privacy is broken. It is clear to the public that when it comes to privacy, computers and "secure" communication over the Internet cannot fully be trusted. This emphasizes the importance of using: (1) Unconditional security for secure network communication. (2) Reduce reliance on untrusted computers. In this paper we explore how to remove the mail system trust assumption in code voting. We use PSMT protocols (SCN 2012) where with the help of visual aids, humans can carry out mod10\mod 10 addition correctly with a 99\% degree of accuracy. We introduce an unconditionally secure MIX based on the combinatorics of set systems. Given that end users of our proposed voting scheme construction are humans we \emph{cannot use} classical Secure Multi Party Computation protocols. Our solutions are for both single and multi-seat elections achieving: \begin{enumerate}[i)] \item An anonymous and perfectly secure communication network secure against a tt-bounded passive adversary used to deliver voting, \item The end step of the protocol can be handled by a human to evade the threat of malware. \end{enumerate} We do not focus on active adversaries

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-Hübner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro Pezzé, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    Group Structure in Correlations and Its Applications in Cryptography

    Get PDF

    Um problema de dominação eterna : classes de grafos, métodos de resolução e perspectiva prática

    Get PDF
    Orientadores: Cid Carvalho de Souza, Orlando LeeTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O problema do conjunto dominante m-eterno é um problema de otimização em grafos que tem sido muito estudado nos últimos anos e para o qual se têm listado aplicações em vários domínios. O objetivo é determinar o número mínimo de guardas que consigam defender eternamente ataques nos vértices de um grafo; denominamos este número o índice de dominação m-eterna do grafo. Nesta tese, estudamos o problema do conjunto dominante m-eterno: lidamos com aspectos de natureza teórica e prática e abordamos o problema restrito a classes especícas de grafos e no caso geral. Examinamos o problema do conjunto dominante m-eterno com respeito a duas classes de grafos: os grafos de Cayley e os conhecidos grafos de intervalo próprios. Primeiramente, mostramos ser inválido um resultado sobre os grafos de Cayley presente na literatura, provamos que o resultado é válido para uma subclasse destes grafos e apresentamos outros achados. Em segundo lugar, fazemos descobertas em relação aos grafos de intervalo próprios, incluindo que, para estes grafos, o índice de dominação m-eterna é igual à cardinalidade máxima de um conjunto independente e, por consequência, o índice de dominação m-eterna pode ser computado em tempo linear. Tratamos de uma questão que é fundamental para aplicações práticas do problema do conjunto dominante m-eterno, mas que tem recebido relativamente pouca atenção. Para tanto, introduzimos dois métodos heurísticos, nos quais formulamos e resolvemos modelos de programação inteira e por restrições para computar limitantes ao índice de dominação m-eterna. Realizamos um vasto experimento para analisar o desempenho destes métodos. Neste processo, geramos um benchmark contendo 750 instâncias e efetuamos uma avaliação prática de limitantes ao índice de dominação m-eterna disponíveis na literatura. Por m, propomos e implementamos um algoritmo exato para o problema do conjunto dominante m-eterno e contribuímos para o entendimento da sua complexidade: provamos que a versão de decisão do problema é NP-difícil. Pelo que temos conhecimento, o algoritmo proposto foi o primeiro método exato a ser desenvolvido e implementado para o problema do conjunto dominante m-eternoAbstract: The m-eternal dominating set problem is a graph-protection optimization problem that has been an active research topic in the recent years and reported to have applications in various domains. It asks for the minimum number of guards that can eternally defend attacks on the vertices of a graph; this number is called the m-eternal domination number of the graph. In this thesis, we study the m-eternal dominating set problem by dealing with aspects of theoretical and practical nature and tackling the problem restricted to specic classes of graphs and in the general case. We examine the m-eternal dominating set problem for two classes of graphs: Cayley graphs and the well-known proper interval graphs. First, we disprove a published result on the m-eternal domination number of Cayley graphs, show that the result is valid for a subclass of these graphs, and report further ndings. Secondly, we present several discoveries regarding proper interval graphs, including that, for these graphs, the m- eternal domination number equals the maximum size of an independent set and, as a consequence, the m-eternal domination number can be computed in linear time. We address an issue that is fundamental to practical applications of the m-eternal dominating set problem but that has received relatively little attention. To this end, we introduce two heuristic methods, in which we propose and solve integer and constraint programming models to compute bounds on the m-eternal domination number. By performing an extensive experiment to validate the features of these methods, we generate a 750-instance benchmark and carry out a practical evaluation of bounds for the m-eternal domination number available in the literature. Finally, we propose and implement an exact algorithm for the m-eternal dominating set problem and contribute to the knowledge on its complexity: we prove that the decision version of the problem is NP-hard. As far as we know, the proposed algorithm was the first developed and implemented exact method for the m-eternal dominating set problemDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação141964/2013-8CAPESCNP

    Recent results and open problems on CIS Graphs

    Get PDF

    Topological dualities in the Ising model

    Full text link
    We relate two classical dualities in low-dimensional quantum field theory: Kramers-Wannier duality of the Ising and related lattice models in 22 dimensions, with electromagnetic duality for finite gauge theories in 33 dimensions. The relation is mediated by the notion of boundary field theory: Ising models are boundary theories for pure gauge theory in one dimension higher. Thus the Ising order/disorder operators are endpoints of Wilson/'t Hooft defects of gauge theory. Symmetry breaking on low-energy states reflects the multiplicity of topological boundary states. In the process we describe lattice theories as (extended) topological field theories with boundaries and domain walls. This allows us to generalize the duality to non-abelian groups; finite, semi-simple Hopf algebras; and, in a different direction, to finite homotopy theories in arbitrary dimension.Comment: 62 pages, 22 figures; v2 adds important reference [S]; v2 has reworked introduction, additional reference [KS], and minor changes; v4 for publication in Geometry and Topology has all new figures and a few minor changes and additional reference
    corecore