236 research outputs found

    Graph Based Semi-supervised Learning with Convolution Neural Networks to Classify Crisis Related Tweets

    Full text link
    During time-critical situations such as natural disasters, rapid classification of data posted on social networks by affected people is useful for humanitarian organizations to gain situational awareness and to plan response efforts. However, the scarcity of labeled data in the early hours of a crisis hinders machine learning tasks thus delays crisis response. In this work, we propose to use an inductive semi-supervised technique to utilize unlabeled data, which is often abundant at the onset of a crisis event, along with fewer labeled data. Specif- ically, we adopt a graph-based deep learning framework to learn an inductive semi-supervised model. We use two real-world crisis datasets from Twitter to evaluate the proposed approach. Our results show significant improvements using unlabeled data as compared to only using labeled data.Comment: 5 pages. arXiv admin note: substantial text overlap with arXiv:1805.0515

    Basic tasks of sentiment analysis

    Full text link
    Subjectivity detection is the task of identifying objective and subjective sentences. Objective sentences are those which do not exhibit any sentiment. So, it is desired for a sentiment analysis engine to find and separate the objective sentences for further analysis, e.g., polarity detection. In subjective sentences, opinions can often be expressed on one or multiple topics. Aspect extraction is a subtask of sentiment analysis that consists in identifying opinion targets in opinionated text, i.e., in detecting the specific aspects of a product or service the opinion holder is either praising or complaining about

    Deep Learning from Smart City Data

    Get PDF
    Rapid urbanisation brings severe challenges on sustainable development and living quality of urban residents. Smart cities develop holistic solutions in the field of urban ecosystems using collected data from different types of Internet of Things (IoT) sources. Today, smart city research and applications have significantly surged as consequences of IoT and machine learning technological enhancement. As advanced machine learning methods, deep learning techniques provide an effective framework which facilitates data mining and knowledge discovery tasks especially in the area of computer vision and natural language processing. In recent years, researchers from various research fields attempted to apply deep learning technologies into smart city applications in order to establish a new smart city era. Much of the research effort on smart city has been made, for example, intelligence transportation, smart healthcare, public safety, etc. Meanwhile, we still face a lot of challenges as the deep learning techniques are still premature for smart city. In this thesis, we first provide a review of the latest research on the convergence of deep learning and smart city for data processing. The review is conducted from two perspectives: while the technique-oriented view presents the popular and extended deep learning models, the application-oriented view focuses on the representative application domains in smart cities. We then focus on two areas, which are intelligence transportation and social media analysis, to demonstrate how deep learning could be used in real-world applications by addressing some prominent issues, e.g., external knowledge integration, multi-modal knowledge fusion, semi-supervised or unsupervised learning, etc. In intelligent transportation area, an attention-based recurrent neural network is proposed to learn from traffic flow readings and external factors for multi-step prediction. More specifically, the attention mechanism is used to model the dynamic temporal dependencies of traffic flow data and a general fusion component is designed to incorporate the external factors. For the traffic event detection task, a multi-modal Generative Adversarial Network (mmGAN) is designed. The proposed model contains a sensor encoder and a social encoder to learn from both traffic flow sensor data and social media data. Meanwhile, the mmGAN model is extended to a semi-supervised architecture by leveraging generative adversarial training to further learn from unlabelled data. In social media analysis area, three deep neural models are proposed for crisis-related data classification and COVID-19 tweet analysis. We designed an adversarial training method to generate adversarial examples for image and textual social data to improve the robustness of multi-modal learning. As most social media data related to crisis or COVID-19 is not labelled, we then proposed two unsupervised text classification models on the basis of the state-of-the-art BERT model. We used the adversarial domain adaptation technique and the zero-shot learning framework to extract knowledge from a large amount of unlabeled social media data. To demonstrate the effectiveness of our proposed solutions for smart city applications, we have collected a large amount of real-time publicly available traffic sensor data from the California department of transportation and social media data (i.e., traffic, crisis and COVID-19) from Twitter, and built a few datasets for examining prediction or classification performances. The proposed methods successfully addressed the limitations of existing approaches and outperformed the popular baseline methods on these real-world datasets. We hope the work would move the relevant research one step further in creating truly intelligence for smart cities

    Emotion AI-Driven Sentiment Analysis: A Survey, Future Research Directions, and Open Issues

    Get PDF
    The essential use of natural language processing is to analyze the sentiment of the author via the context. This sentiment analysis (SA) is said to determine the exactness of the underlying emotion in the context. It has been used in several subject areas such as stock market prediction, social media data on product reviews, psychology, judiciary, forecasting, disease prediction, agriculture, etc. Many researchers have worked on these areas and have produced significant results. These outcomes are beneficial in their respective fields, as they help to understand the overall summary in a short time. Furthermore, SA helps in understanding actual feedback shared across di erent platforms such as Amazon, TripAdvisor, etc. The main objective of this thorough survey was to analyze some of the essential studies done so far and to provide an overview of SA models in the area of emotion AI-driven SA. In addition, this paper o ers a review of ontology-based SA and lexicon-based SA along with machine learning models that are used to analyze the sentiment of the given context. Furthermore, this work also discusses di erent neural network-based approaches for analyzing sentiment. Finally, these di erent approaches were also analyzed with sample data collected from Twitter. Among the four approaches considered in each domain, the aspect-based ontology method produced 83% accuracy among the ontology-based SAs, the term frequency approach produced 85% accuracy in the lexicon-based analysis, and the support vector machine-based approach achieved 90% accuracy among the other machine learning-based approaches.Ministerio de Educación (MOE) en Taiwán N/

    CrisisMatch: Semi-Supervised Few-Shot Learning for Fine-Grained Disaster Tweet Classification

    Full text link
    The shared real-time information about natural disasters on social media platforms like Twitter and Facebook plays a critical role in informing volunteers, emergency managers, and response organizations. However, supervised learning models for monitoring disaster events require large amounts of annotated data, making them unrealistic for real-time use in disaster events. To address this challenge, we present a fine-grained disaster tweet classification model under the semi-supervised, few-shot learning setting where only a small number of annotated data is required. Our model, CrisisMatch, effectively classifies tweets into fine-grained classes of interest using few labeled data and large amounts of unlabeled data, mimicking the early stage of a disaster. Through integrating effective semi-supervised learning ideas and incorporating TextMixUp, CrisisMatch achieves performance improvement on two disaster datasets of 11.2\% on average. Further analyses are also provided for the influence of the number of labeled data and out-of-domain results.Comment: Accepted by ISCRAM 202

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin
    corecore