55 research outputs found

    A Study of Deep CNN Model with Labeling Noise Based on Granular-ball Computing

    Full text link
    In supervised learning, the presence of noise can have a significant impact on decision making. Since many classifiers do not take label noise into account in the derivation of the loss function, including the loss functions of logistic regression, SVM, and AdaBoost, especially the AdaBoost iterative algorithm, whose core idea is to continuously increase the weight value of the misclassified samples, the weight of samples in many presence of label noise will be increased, leading to a decrease in model accuracy. In addition, the learning process of BP neural network and decision tree will also be affected by label noise. Therefore, solving the label noise problem is an important element of maintaining the robustness of the network model, which is of great practical significance. Granular ball computing is an important modeling method developed in the field of granular computing in recent years, which is an efficient, robust and scalable learning method. In this paper, we pioneered a granular ball neural network algorithm model, which adopts the idea of multi-granular to filter label noise samples during model training, solving the current problem of model instability caused by label noise in the field of deep learning, greatly reducing the proportion of label noise in training samples and improving the robustness of neural network models

    Deep multiple classifier fusion for traffic scene recognition

    Get PDF

    An Effective Multi-Resolution Hierarchical Granular Representation based Classifier using General Fuzzy Min-Max Neural Network

    Full text link
    IEEE Motivated by the practical demands for simplification of data towards being consistent with human thinking and problem solving as well as tolerance of uncertainty, information granules are becoming important entities in data processing at different levels of data abstraction. This paper proposes a method to construct classifiers from multi-resolution hierarchical granular representations (MRHGRC) using hyperbox fuzzy sets. The proposed approach forms a series of granular inferences hierarchically through many levels of abstraction. An attractive characteristic of our classifier is that it can maintain a high accuracy in comparison to other fuzzy min-max models at a low degree of granularity based on reusing the knowledge learned from lower levels of abstraction. In addition, our approach can reduce the data size significantly as well as handle the uncertainty and incompleteness associated with data in real-world applications. The construction process of the classifier consists of two phases. The first phase is to formulate the model at the greatest level of granularity, while the later stage aims to reduce the complexity of the constructed model and deduce it from data at higher abstraction levels. Experimental analyses conducted comprehensively on both synthetic and real datasets indicated the efficiency of our method in terms of training time and predictive performance in comparison to other types of fuzzy min-max neural networks and common machine learning algorithms

    VPRS-based regional decision fusion of CNN and MRF classifications for very fine resolution remotely sensed images

    Get PDF
    Recent advances in computer vision and pattern recognition have demonstrated the superiority of deep neural networks using spatial feature representation, such as convolutional neural networks (CNN), for image classification. However, any classifier, regardless of its model structure (deep or shallow), involves prediction uncertainty when classifying spatially and spectrally complicated very fine spatial resolution (VFSR) imagery. We propose here to characterise the uncertainty distribution of CNN classification and integrate it into a regional decision fusion to increase classification accuracy. Specifically, a variable precision rough set (VPRS) model is proposed to quantify the uncertainty within CNN classifications of VFSR imagery, and partition this uncertainty into positive regions (correct classifications) and non-positive regions (uncertain or incorrect classifications). Those “more correct” areas were trusted by the CNN, whereas the uncertain areas were rectified by a Multi-Layer Perceptron (MLP)-based Markov random field (MLP-MRF) classifier to provide crisp and accurate boundary delineation. The proposed MRF-CNN fusion decision strategy exploited the complementary characteristics of the two classifiers based on VPRS uncertainty description and classification integration. The effectiveness of the MRF-CNN method was tested in both urban and rural areas of southern England as well as Semantic Labelling datasets. The MRF-CNN consistently outperformed the benchmark MLP, SVM, MLP-MRF and CNN and the baseline methods. This research provides a regional decision fusion framework within which to gain the advantages of model-based CNN, while overcoming the problem of losing effective resolution and uncertain prediction at object boundaries, which is especially pertinent for complex VFSR image classification

    An Ensemble Classification and Hybrid Feature Selection Approach for Fake News Stance Detection

    Get PDF
    The developments in Internet and notions of social media have revolutionised representations and disseminations of news. News spreads quickly while costing less in social media. Amidst these quick distributions, dangerous or seductive information like user generated false news also spread equally. on social media. Distinguishing true incidents from false news strips create key challenges. Prior to sending the feature vectors to the classifier, it was suggested in this study effort to use dimensionality reduction approaches to do so. These methods would not significantly affect the result, though. Furthermore, utilising dimensionality reduction techniques significantly reduces the time needed to complete a forecast. This paper presents a hybrid feature selection method to overcome the above mentioned issues. The classifications of fake news are based on ensembles which identify connections between stories and headlines of news items. Initially, data is pre-processed to transform unstructured data into structures for ease of processing. In the second step, unidentified qualities of false news from diverse connections amongst news articles are extracted utilising PCA (Principal Component Analysis). For the feature reduction procedure, the third step uses FPSO (Fuzzy Particle Swarm Optimization) to select features. To efficiently understand how news items are represented and spot bogus news, this study creates ELMs (Ensemble Learning Models). This study obtained a dataset from Kaggle to create the reasoning. In this study, four assessment metrics have been used to evaluate performances of classifying models

    Deep learning interpretability methods for the classification of blood cell images

    Get PDF
    Durant l’última dècada, el sector mèdic ha adoptat les xarxes neuronals com a eina per ajudar a diagnosticar i comprendre diferents malalties, degut a la seva elevada precisió i versatilitat. No obstant, la seva integració al flux de treball dels patòlegs s'ha vist greument afectada per la naturalesa “Black-Box” que presenten aquests models. Els complexos conceptes matemàtics i estadístics en què es basen aquests models, dificulten enormement la comprensió directa dels criteris de decisió en el qual es basen per fer les seves prediccions. La interpretabilitat de xarxes neuronal té com a objectiu proporcionar explicacions en termes comprensibles a un ésser humà. En aquest projecte, es duu a terme un estudi d’interpretabilitat a la xarxa DisplasiaNet, una xarxa neuronal convolucional especialment optimitzada per classificar les imatges de neutròfils sanguinis perifèrics en Normals o Displastics. Treballant estretament amb patòlegs i amb l’ajut d’una aplicació d’anotacions web construïda a propòsit, s’extreuen les principals característiques morfològiques dels diferents estats cel·lulars. En paral·lel, s’apliquen tècniques d’interpretabilitat d’imatges a la xarxa DisplasiNet, com ara mapes de saliència, mapes d’activació de classes i mapes de sensibilitat envers l’oclusió, per obtenir les caracteristiques que el model considera més rellevants. L'estudi ha descobert que DisplasiaNet detecta displàsia en neutròfils de manera similar als patòlegs, validant així la seva precisió. En primer lloc, es centra en la granularitat del citoplasma i, en segon lloc, en la densitat cromatínica del nucli i la segmentació lobular.Durante la última década, el sector médico ha adoptado ampliamente las redes neuronales como una herramienta para ayudar a diagnosticar y comprender diferentes enfermedades. Sin embargo, su integración en el flujo de trabajo de los patólogos se ha visto gravemente afectado debido a la naturaleza “Black-Box” que presentan estos modelos. Los complejos conceptos matemáticos y estadísticos en los que se basan estos modelos dificultan enormemente la comprensión directa de los criterios decisivos que el modelo emplea para realizar predicciones. La interpretabilidad de redes neuronales tiene como objetivo proporcionar explicaciones en términos comprensibles para un ser humano. En este proyecto, se lleva a cabo un estudio de interpretabilidad de de la red nuronal DisplasiaNet, una red convolucional especialmente optimizada para clasificar imágenes de neutrófilos de sangre periférica en displásicas o normales. Trabajando en estrecha colaboración con patólogos expertos y con la ayuda de una aplicación de anotación web expresamente diseñada, se extraen las principales características morfológicas que presentan los diferentes estados celulares. En paralelo se aplican a DisplasiaNet técnicas de Interpretabilidad de redes neuronales especializadas en el analisis de imágenes tales como Mapas de relevancia, Mapas de activación de clases y Mapas de sensibilidad de oclusión para obtener las características que el modelo considera más relevantes. El estudio ha encontrado que DisplasiaNet detecta displasia en neutrófilos de manera similar a los patólogos expertos, validando así su precisión. En primer lugar, se centra en la granularidad del citoplasma y, en segundo lugar, en la densidad cromatínica del núcleo y la segmentación lobular.During the past decade, the Medical Sector has widely adopted Neural Networks as a tool to help diagnose and to further understand different diseases. This is due to their proven high accuracy and versatility. However, its integration into the pathologists' workflow has been severely affected due to the black box nature these models present. The complex mathematical and statistical concepts these models are based on greatly hinder the direct understanding of the model's decision criteria when these perform predictions. Neural Network Interpretability aims to provide explanations in understandable terms to a human. In this project, a deep learning interpretability study is carried out on DisplasiaNet, a Convolutional Neural Network specially optimized to classify Peripheral Blood Neutrophil images into Dysplastic or Normal. Working closely with expert pathologists and with the help of a purposely built web annotation app, the main morphological characteristics of the different cell states are extracted. Image interpretability techniques such as Saliency Maps, Class Activation Maps, and Occlusion Sensitivity Maps are applied to DisplasiaNet to obtain the features the model considers the most relevant. The study has found that DisplasiaNet detects dysplasia in Neutrophils in a similar manner to expert pathologists, thus validating its accuracy. Firstly it focuses on the granularity of the cytoplasm, and secondly on the nucleus chromatinic density and lobular segmentation

    Data driven approaches for investigating molecular heterogeneity of the brain

    Get PDF
    It has been proposed that one of the clearest organizing principles for most sensory systems is the existence of parallel subcircuits and processing streams that form orderly and systematic mappings from stimulus space to neurons. Although the spatial heterogeneity of the early olfactory circuitry has long been recognized, we know comparatively little about the circuits that propagate sensory signals downstream. Investigating the potential modularity of the bulb’s intrinsic circuits proves to be a difficult task as termination patterns of converging projections, as with the bulb’s inputs, are not feasibly realized. Thus, if such circuit motifs exist, their detection essentially relies on identifying differential gene expression, or “molecular signatures,” that may demarcate functional subregions. With the arrival of comprehensive (whole genome, cellular resolution) datasets in biology and neuroscience, it is now possible for us to carry out large-scale investigations and make particular use of the densely catalogued, whole genome expression maps of the Allen Brain Atlas to carry out systematic investigations of the molecular topography of the olfactory bulb’s intrinsic circuits. To address the challenges associated with high-throughput and high-dimensional datasets, a deep learning approach will form the backbone of our informatic pipeline. In the proposed work, we test the hypothesis that the bulb’s intrinsic circuits are parceled into distinct, parallel modules that can be defined by genome-wide patterns of expression. In pursuit of this aim, our deep learning framework will facilitate the group-registration of the mitral cell layers of ~ 50,000 in-situ olfactory bulb circuits to test this hypothesis
    corecore