7,044 research outputs found

    Foundations and modelling of dynamic networks using Dynamic Graph Neural Networks: A survey

    Full text link
    Dynamic networks are used in a wide range of fields, including social network analysis, recommender systems, and epidemiology. Representing complex networks as structures changing over time allow network models to leverage not only structural but also temporal patterns. However, as dynamic network literature stems from diverse fields and makes use of inconsistent terminology, it is challenging to navigate. Meanwhile, graph neural networks (GNNs) have gained a lot of attention in recent years for their ability to perform well on a range of network science tasks, such as link prediction and node classification. Despite the popularity of graph neural networks and the proven benefits of dynamic network models, there has been little focus on graph neural networks for dynamic networks. To address the challenges resulting from the fact that this research crosses diverse fields as well as to survey dynamic graph neural networks, this work is split into two main parts. First, to address the ambiguity of the dynamic network terminology we establish a foundation of dynamic networks with consistent, detailed terminology and notation. Second, we present a comprehensive survey of dynamic graph neural network models using the proposed terminologyComment: 28 pages, 9 figures, 8 table

    Improving the scalability of parallel N-body applications with an event driven constraint based execution model

    Full text link
    The scalability and efficiency of graph applications are significantly constrained by conventional systems and their supporting programming models. Technology trends like multicore, manycore, and heterogeneous system architectures are introducing further challenges and possibilities for emerging application domains such as graph applications. This paper explores the space of effective parallel execution of ephemeral graphs that are dynamically generated using the Barnes-Hut algorithm to exemplify dynamic workloads. The workloads are expressed using the semantics of an Exascale computing execution model called ParalleX. For comparison, results using conventional execution model semantics are also presented. We find improved load balancing during runtime and automatic parallelism discovery improving efficiency using the advanced semantics for Exascale computing.Comment: 11 figure

    Exploring the Evolution of Node Neighborhoods in Dynamic Networks

    Full text link
    Dynamic Networks are a popular way of modeling and studying the behavior of evolving systems. However, their analysis constitutes a relatively recent subfield of Network Science, and the number of available tools is consequently much smaller than for static networks. In this work, we propose a method specifically designed to take advantage of the longitudinal nature of dynamic networks. It characterizes each individual node by studying the evolution of its direct neighborhood, based on the assumption that the way this neighborhood changes reflects the role and position of the node in the whole network. For this purpose, we define the concept of \textit{neighborhood event}, which corresponds to the various transformations such groups of nodes can undergo, and describe an algorithm for detecting such events. We demonstrate the interest of our method on three real-world networks: DBLP, LastFM and Enron. We apply frequent pattern mining to extract meaningful information from temporal sequences of neighborhood events. This results in the identification of behavioral trends emerging in the whole network, as well as the individual characterization of specific nodes. We also perform a cluster analysis, which reveals that, in all three networks, one can distinguish two types of nodes exhibiting different behaviors: a very small group of active nodes, whose neighborhood undergo diverse and frequent events, and a very large group of stable nodes

    Intrinsically Dynamic Network Communities

    Get PDF
    Community finding algorithms for networks have recently been extended to dynamic data. Most of these recent methods aim at exhibiting community partitions from successive graph snapshots and thereafter connecting or smoothing these partitions using clever time-dependent features and sampling techniques. These approaches are nonetheless achieving longitudinal rather than dynamic community detection. We assume that communities are fundamentally defined by the repetition of interactions among a set of nodes over time. According to this definition, analyzing the data by considering successive snapshots induces a significant loss of information: we suggest that it blurs essentially dynamic phenomena - such as communities based on repeated inter-temporal interactions, nodes switching from a community to another across time, or the possibility that a community survives while its members are being integrally replaced over a longer time period. We propose a formalism which aims at tackling this issue in the context of time-directed datasets (such as citation networks), and present several illustrations on both empirical and synthetic dynamic networks. We eventually introduce intrinsically dynamic metrics to qualify temporal community structure and emphasize their possible role as an estimator of the quality of the community detection - taking into account the fact that various empirical contexts may call for distinct `community' definitions and detection criteria.Comment: 27 pages, 11 figure

    Ontology change management and identification of change patterns

    Get PDF
    Ontologies can support a variety of purposes, ranging from capturing the conceptual knowledge to the organisation of digital content and information. However, information systems are always subject to change and ontology change management can pose challenges. In this sense, the application and representation of ontology changes in terms of higher-level change operations can describe more meaningful semantics behind the applied change. In this paper, we propose a fourphase process that covers the operationalization, representation and detection of higherlevel changes in ontology evolution life cycle. We present different levels of change operators based on the granularity and domainspecificity of changes. The first layer is based on generic atomic level change operators, whereas the next two layers are user-defined (generic/domainspecific) change patterns. We introduce layered change logs for the explicit operational representation of ontology changes. We formalised the change log using a graph-based approach. We introduce a technique to identify composite changes that not only assists in formulating ontology change log data in a more concise manner, but also helps in realizing the semantics and intent behind any applied change. Furthermore, we identify frequent change sequences that are applied as a reference in order to discover reusable, often domainspecific and usagedriven change patterns. We describe the pattern identification algorithms and evaluate their performance

    A Selectivity based approach to Continuous Pattern Detection in Streaming Graphs

    Full text link
    Cyber security is one of the most significant technical challenges in current times. Detecting adversarial activities, prevention of theft of intellectual properties and customer data is a high priority for corporations and government agencies around the world. Cyber defenders need to analyze massive-scale, high-resolution network flows to identify, categorize, and mitigate attacks involving networks spanning institutional and national boundaries. Many of the cyber attacks can be described as subgraph patterns, with prominent examples being insider infiltrations (path queries), denial of service (parallel paths) and malicious spreads (tree queries). This motivates us to explore subgraph matching on streaming graphs in a continuous setting. The novelty of our work lies in using the subgraph distributional statistics collected from the streaming graph to determine the query processing strategy. We introduce a "Lazy Search" algorithm where the search strategy is decided on a vertex-to-vertex basis depending on the likelihood of a match in the vertex neighborhood. We also propose a metric named "Relative Selectivity" that is used to select between different query processing strategies. Our experiments performed on real online news, network traffic stream and a synthetic social network benchmark demonstrate 10-100x speedups over selectivity agnostic approaches.Comment: in 18th International Conference on Extending Database Technology (EDBT) (2015
    corecore