5,438 research outputs found

    Towards an Intelligent Tutor for Mathematical Proofs

    Get PDF
    Computer-supported learning is an increasingly important form of study since it allows for independent learning and individualized instruction. In this paper, we discuss a novel approach to developing an intelligent tutoring system for teaching textbook-style mathematical proofs. We characterize the particularities of the domain and discuss common ITS design models. Our approach is motivated by phenomena found in a corpus of tutorial dialogs that were collected in a Wizard-of-Oz experiment. We show how an intelligent tutor for textbook-style mathematical proofs can be built on top of an adapted assertion-level proof assistant by reusing representations and proof search strategies originally developed for automated and interactive theorem proving. The resulting prototype was successfully evaluated on a corpus of tutorial dialogs and yields good results.Comment: In Proceedings THedu'11, arXiv:1202.453

    Computer supported mathematics with Ωmega

    Get PDF
    AbstractClassical automated theorem proving of today is based on ingenious search techniques to find a proof for a given theorem in very large search spaces—often in the range of several billion clauses. But in spite of many successful attempts to prove even open mathematical problems automatically, their use in everyday mathematical practice is still limited.The shift from search based methods to more abstract planning techniques however opened up a paradigm for mathematical reasoning on a computer and several systems of that kind now employ a mix of interactive, search based as well as proof planning techniques.The Ωmega system is at the core of several related and well-integrated research projects of the Ωmega research group, whose aim is to develop system support for a working mathematician as well as a software engineer when employing formal methods for quality assurance. In particular, Ωmega supports proof development at a human-oriented abstract level of proof granularity. It is a modular system with a central proof data structure and several supplementary subsystems including automated deduction and computer algebra systems. Ωmega has many characteristics in common with systems like NuPrL, CoQ, Hol, Pvs, and Isabelle. However, it differs from these systems with respect to its focus on proof planning and in that respect it is more similar to the proof planning systems Clam and λClam at Edinburgh

    A Vernacular for Coherent Logic

    Full text link
    We propose a simple, yet expressive proof representation from which proofs for different proof assistants can easily be generated. The representation uses only a few inference rules and is based on a frag- ment of first-order logic called coherent logic. Coherent logic has been recognized by a number of researchers as a suitable logic for many ev- eryday mathematical developments. The proposed proof representation is accompanied by a corresponding XML format and by a suite of XSL transformations for generating formal proofs for Isabelle/Isar and Coq, as well as proofs expressed in a natural language form (formatted in LATEX or in HTML). Also, our automated theorem prover for coherent logic exports proofs in the proposed XML format. All tools are publicly available, along with a set of sample theorems.Comment: CICM 2014 - Conferences on Intelligent Computer Mathematics (2014
    corecore