213 research outputs found

    Granular Support Vector Machines Based on Granular Computing, Soft Computing and Statistical Learning

    Get PDF
    With emergence of biomedical informatics, Web intelligence, and E-business, new challenges are coming for knowledge discovery and data mining modeling problems. In this dissertation work, a framework named Granular Support Vector Machines (GSVM) is proposed to systematically and formally combine statistical learning theory, granular computing theory and soft computing theory to address challenging predictive data modeling problems effectively and/or efficiently, with specific focus on binary classification problems. In general, GSVM works in 3 steps. Step 1 is granulation to build a sequence of information granules from the original dataset or from the original feature space. Step 2 is modeling Support Vector Machines (SVM) in some of these information granules when necessary. Finally, step 3 is aggregation to consolidate information in these granules at suitable abstract level. A good granulation method to find suitable granules is crucial for modeling a good GSVM. Under this framework, many different granulation algorithms including the GSVM-CMW (cumulative margin width) algorithm, the GSVM-AR (association rule mining) algorithm, a family of GSVM-RFE (recursive feature elimination) algorithms, the GSVM-DC (data cleaning) algorithm and the GSVM-RU (repetitive undersampling) algorithm are designed for binary classification problems with different characteristics. The empirical studies in biomedical domain and many other application domains demonstrate that the framework is promising. As a preliminary step, this dissertation work will be extended in the future to build a Granular Computing based Predictive Data Modeling framework (GrC-PDM) with which we can create hybrid adaptive intelligent data mining systems for high quality prediction

    Support matrix machine: A review

    Full text link
    Support vector machine (SVM) is one of the most studied paradigms in the realm of machine learning for classification and regression problems. It relies on vectorized input data. However, a significant portion of the real-world data exists in matrix format, which is given as input to SVM by reshaping the matrices into vectors. The process of reshaping disrupts the spatial correlations inherent in the matrix data. Also, converting matrices into vectors results in input data with a high dimensionality, which introduces significant computational complexity. To overcome these issues in classifying matrix input data, support matrix machine (SMM) is proposed. It represents one of the emerging methodologies tailored for handling matrix input data. The SMM method preserves the structural information of the matrix data by using the spectral elastic net property which is a combination of the nuclear norm and Frobenius norm. This article provides the first in-depth analysis of the development of the SMM model, which can be used as a thorough summary by both novices and experts. We discuss numerous SMM variants, such as robust, sparse, class imbalance, and multi-class classification models. We also analyze the applications of the SMM model and conclude the article by outlining potential future research avenues and possibilities that may motivate academics to advance the SMM algorithm

    Mitigating the effect of covariates in face recognition

    Get PDF
    Current face recognition systems capture faces of cooperative individuals in controlled environment as part of the face recognition process. It is therefore possible to control lighting, pose, background, and quality of images. However, in a real world application, we have to deal with both ideal and imperfect data. Performance of current face recognition systems is affected for such non-ideal and challenging cases. This research focuses on designing algorithms to mitigate the effect of covariates in face recognition.;To address the challenge of facial aging, an age transformation algorithm is proposed that registers two face images and minimizes the aging variations. Unlike the conventional method, the gallery face image is transformed with respect to the probe face image and facial features are extracted from the registered gallery and probe face images. The variations due to disguises cause change in visual perception, alter actual data, make pertinent facial information disappear, mask features to varying degrees, or introduce extraneous artifacts in the face image. To recognize face images with variations due to age progression and disguises, a granular face verification approach is designed which uses dynamic feed-forward neural architecture to extract 2D log polar Gabor phase features at different granularity levels. The granular levels provide non-disjoint spatial information which is combined using the proposed likelihood ratio based Support Vector Machine match score fusion algorithm. The face verification algorithm is validated using five face databases including the Notre Dame face database, FG-Net face database and three disguise face databases.;The information in visible spectrum images is compromised due to improper illumination whereas infrared images provide invariance to illumination and expression. A multispectral face image fusion algorithm is proposed to address the variations in illumination. The Support Vector Machine based image fusion algorithm learns the properties of the multispectral face images at different resolution and granularity levels to determine optimal information and combines them to generate a fused image. Experiments on the Equinox and Notre Dame multispectral face databases show that the proposed algorithm outperforms existing algorithms. We next propose a face mosaicing algorithm to address the challenge due to pose variations. The mosaicing algorithm generates a composite face image during enrollment using the evidence provided by frontal and semiprofile face images of an individual. Face mosaicing obviates the need to store multiple face templates representing multiple poses of a users face image. Experiments conducted on three different databases indicate that face mosaicing offers significant benefits by accounting for the pose variations that are commonly observed in face images.;Finally, the concept of online learning is introduced to address the problem of classifier re-training and update. A learning scheme for Support Vector Machine is designed to train the classifier in online mode. This enables the classifier to update the decision hyperplane in order to account for the newly enrolled subjects. On a heterogeneous near infrared face database, the case study using Principal Component Analysis and C2 feature algorithms shows that the proposed online classifier significantly improves the verification performance both in terms of accuracy and computational time

    Statistical methods for the detection of non-technical losses: a case study for the Nelson Mandela Bay Municipality

    Get PDF
    Electricity is one of the most stolen commodities in the world. Electricity theft can be defined as the criminal act of stealing electrical power. Several types of electricity theft exist, including illegal connections and bypassing and tampering with energy meters. The negative financial impacts, due to lost revenue, of electricity theft are far reaching and affect both developing and developed countries. . Here in South Africa, Eskom loses over R2 Billion annually due to electricity theft. Data mining and nonparametric statistical methods have been used to detect fraudulent usage of electricity by assessing abnormalities and abrupt changes in kilowatt hour (kWh) consumption patterns. Identifying effective measures to detect fraudulent electricity usage is an active area of research in the electrical domain. In this study, Support Vector Machines (SVM), NaĂŻve Bayes (NB) and k-Nearest Neighbour (KNN) algorithms were used to design and propose an electricity fraud detection model. Using the Nelson Mandela Bay Municipality as a case study, three classifiers were built with SVM, NB and KNN algorithms. The performance of these classifiers were evaluated and compared

    Computational Intelligence Based Classifier Fusion Models for Biomedical Classification Applications

    Get PDF
    The generalization abilities of machine learning algorithms often depend on the algorithms’ initialization, parameter settings, training sets, or feature selections. For instance, SVM classifier performance largely relies on whether the selected kernel functions are suitable for real application data. To enhance the performance of individual classifiers, this dissertation proposes classifier fusion models using computational intelligence knowledge to combine different classifiers. The first fusion model called T1FFSVM combines multiple SVM classifiers through constructing a fuzzy logic system. T1FFSVM can be improved by tuning the fuzzy membership functions of linguistic variables using genetic algorithms. The improved model is called GFFSVM. To better handle uncertainties existing in fuzzy MFs and in classification data, T1FFSVM can also be improved by applying type-2 fuzzy logic to construct a type-2 fuzzy classifier fusion model (T2FFSVM). T1FFSVM, GFFSVM, and T2FFSVM use accuracy as a classifier performance measure. AUC (the area under an ROC curve) is proved to be a better classifier performance metric. As a comparison study, AUC-based classifier fusion models are also proposed in the dissertation. The experiments on biomedical datasets demonstrate promising performance of the proposed classifier fusion models comparing with the individual composing classifiers. The proposed classifier fusion models also demonstrate better performance than many existing classifier fusion methods. The dissertation also studies one interesting phenomena in biology domain using machine learning and classifier fusion methods. That is, how protein structures and sequences are related each other. The experiments show that protein segments with similar structures also share similar sequences, which add new insights into the existing knowledge on the relation between protein sequences and structures: similar sequences share high structure similarity, but similar structures may not share high sequence similarity

    Severity Analysis of Large Truck Crashes- Comparision Between the Regression Modeling Methods with Machine Learning Methods.

    Get PDF
    According to the Texas Department of Transportation’s Texas Motor Vehicle Crash Statistics, Texas has had the highest number of severe crashes involving large trucks in the US. As defined by the US Department of Transportation, a large truck is any vehicle with a gross vehicle weight rating greater than 10,000 pounds. Generally, it requires more time and much more space for large trucks to accelerating, slowing down, and stopping. Also, there will be large blind spots when large trucks make wide turns. Therefore, if an unexpected traffic situation comes upon, It would be more difficult for large trucks to take evasive actions than regular vehicles to avoid a collision. Due to their large size and heavy weight, large truck crashes often result in huge economic and social costs. Predicting the severity level of a reported large truck crash with unknown severity or of the severity of crashes that may be expected to occur sometime in the future is useful. It can help to prevent the crash from happening or help rescue teams and hospitals provide proper medical care as fast as possible. To identify the appropriate modeling approaches for predicting the severity of large truck crash, in this research, four representative classification tree-based ML models (e.g., Extreme Gradient Boosting tree (XGBoost), Adaptive Boosting tree(AdaBoost), Random Forest (RF), Gradient Boost Decision Tree (GBDT)), two non-tree-based ML models (e.g., the Support Vector Machines (SVM), k-Nearest Neighbors (kNN)), and LR model were selected. The results indicate that the GBDT model performs best among all of seven models

    Diversified Ensemble Classifiers for Highly Imbalanced Data Learning and their Application in Bioinformatics

    Get PDF
    In this dissertation, the problem of learning from highly imbalanced data is studied. Imbalance data learning is of great importance and challenge in many real applications. Dealing with a minority class normally needs new concepts, observations and solutions in order to fully understand the underlying complicated models. We try to systematically review and solve this special learning task in this dissertation.We propose a new ensemble learning framework—Diversified Ensemble Classifiers for Imbal-anced Data Learning (DECIDL), based on the advantages of existing ensemble imbalanced learning strategies. Our framework combines three learning techniques: a) ensemble learning, b) artificial example generation, and c) diversity construction by reversely data re-labeling. As a meta-learner, DECIDL utilizes general supervised learning algorithms as base learners to build an ensemble committee. We create a standard benchmark data pool, which contains 30 highly skewed sets with diverse characteristics from different domains, in order to facilitate future research on imbalance data learning. We use this benchmark pool to evaluate and compare our DECIDL framework with several ensemble learning methods, namely under-bagging, over-bagging, SMOTE-bagging, and AdaBoost. Extensive experiments suggest that our DECIDL framework is comparable with other methods. The data sets, experiments and results provide a valuable knowledge base for future research on imbalance learning. We develop a simple but effective artificial example generation method for data balancing. Two new methods DBEG-ensemble and DECIDL-DBEG are then designed to improve the power of imbalance learning. Experiments show that these two methods are comparable to the state-of-the-art methods, e.g., GSVM-RU and SMOTE-bagging. Furthermore, we investigate learning on imbalanced data from a new angle—active learning. By combining active learning with the DECIDL framework, we show that the newly designed Active-DECIDL method is very effective for imbalance learning, suggesting the DECIDL framework is very robust and flexible.Lastly, we apply the proposed learning methods to a real-world bioinformatics problem—protein methylation prediction. Extensive computational results show that the DECIDL method does perform very well for the imbalanced data mining task. Importantly, the experimental results have confirmed our new contributions on this particular data learning problem

    Fuzzy rough and evolutionary approaches to instance selection

    Get PDF

    Misogyny Detection in Social Media on the Twitter Platform

    Get PDF
    The thesis is devoted to the problem of misogyny detection in social media. In the work we analyse the difference between all offensive language and misogyny language in social media, and review the best existing approaches to detect offensive and misogynistic language, which are based on classical machine learning and neural networks. We also review recent shared tasks aimed to detect misogyny in social media, several of which we have participated in. We propose an approach to the detection and classification of misogyny in texts, based on the construction of an ensemble of models of classical machine learning: Logistic Regression, Naive Bayes, Support Vectors Machines. Also, at the preprocessing stage we used some linguistic features, and novel approaches which allow us to improve the quality of classification. We tested the model on the real datasets both English and multilingual corpora. The results we achieved with our model are highly competitive in this area and demonstrate the capability for future improvement
    • …
    corecore