7,113 research outputs found

    Experimental Approaches to the Composition of Interactive Video Game Music

    Get PDF
    This project explores experimental approaches and strategies to the composition of interactive music for the medium of video games. Whilst music in video games has not enjoyed the technological progress that other aspects of the software have received, budgets expand and incomes from releases grow. Music is now arguably less interactive than it was in the 1990’s, and whilst graphics occupy large amounts of resources and development time, audio does not garner the same attention. This portfolio develops strategies and audio engines, creating music using the techniques of aleatoric composition, real-time remixing of existing work, and generative synthesisers. The project created music for three ‘open-form’ games : an example of the racing genre (Kart Racing Pro); an arena-based first-person shooter (Counter-Strike : Source); and a real-time strategy title (0 A.D.). These games represent a cross-section of ‘sandbox’- type games on the market, as well as all being examples of games with open-ended or open-source code

    Learning and planning in videogames via task decomposition

    Get PDF
    Artificial intelligence (AI) methods have come a long way in tabletop games, with computer programs having now surpassed human experts in the challenging games of chess, Go and heads-up no-limit Texas hold'em. However, a significant simplifying factor in these games is that individual decisions have a relatively large impact on the state of the game. The real world, however, is granular. Human beings are continually presented with new information and are faced with making a multitude of tiny decisions every second. Viewed in these terms, feedback is often sparse, meaning that it only arrives after one has made a great number of decisions. Moreover, in many real-world problems there is a continuous range of actions to choose from, and attaining meaningful feedback from the environment often requires a strong degree of action coordination. Videogames, in which players must likewise contend with granular time scales and continuous action spaces, are in this sense a better proxy for real-world problems, and have thus become regarded by many as the new frontier in games AI. Seemingly, the way in which human players approach granular decision-making in videogames is by decomposing complex tasks into high-level subproblems, thereby allowing them to focus on the "big picture". For example, in Super Mario World, human players seem to look ahead in extended steps, such as climbing a vine or jumping over a pit, rather than planning one frame at a time. Currently though, this type of reasoning does not come easily to machines, leaving many open research problems related to task decomposition. This thesis focuses on three such problems in particular: (1) The challenge of learning subgoals autonomously, so as to lessen the issue of sparse feedback. (2) The challenge of combining discrete planning techniques with extended actions whose durations and effects on the environment are uncertain. (3) The questions of when and why it is beneficial to reason over high-level continuous control variables, such as the velocity of a player-controlled ship, rather than over the most low-level actions available. We address these problems via new algorithms and novel experimental design, demonstrating empirically that our algorithms are more efficient than strong baselines that do not leverage task decomposition, and yielding insight into the types of environment where task decomposition is likely to be beneficial

    Interpretation at the controller's edge: designing graphical user interfaces for the digital publication of the excavations at Gabii (Italy)

    Get PDF
    This paper discusses the authors’ approach to designing an interface for the Gabii Project’s digital volumes that attempts to fuse elements of traditional synthetic publications and site reports with rich digital datasets. Archaeology, and classical archaeology in particular, has long engaged with questions of the formation and lived experience of towns and cities. Such studies might draw on evidence of local topography, the arrangement of the built environment, and the placement of architectural details, monuments and inscriptions (e.g. Johnson and Millett 2012). Fundamental to the continued development of these studies is the growing body of evidence emerging from new excavations. Digital techniques for recording evidence “on the ground,” notably SFM (structure from motion aka close range photogrammetry) for the creation of detailed 3D models and for scene-level modeling in 3D have advanced rapidly in recent years. These parallel developments have opened the door for approaches to the study of the creation and experience of urban space driven by a combination of scene-level reconstruction models (van Roode et al. 2012, Paliou et al. 2011, Paliou 2013) explicitly combined with detailed SFM or scanning based 3D models representing stratigraphic evidence. It is essential to understand the subtle but crucial impact of the design of the user interface on the interpretation of these models. In this paper we focus on the impact of design choices for the user interface, and make connections between design choices and the broader discourse in archaeological theory surrounding the practice of the creation and consumption of archaeological knowledge. As a case in point we take the prototype interface being developed within the Gabii Project for the publication of the Tincu House. In discussing our own evolving practices in engagement with the archaeological record created at Gabii, we highlight some of the challenges of undertaking theoretically-situated user interface design, and their implications for the publication and study of archaeological materials
    • 

    corecore