15,759 research outputs found

    Information Flow Model for Commercial Security

    Get PDF
    Information flow in Discretionary Access Control (DAC) is a well-known difficult problem. This paper formalizes the fundamental concepts and establishes a theory of information flow security. A DAC system is information flow secure (IFS), if any data never flows into the hands of owner’s enemies (explicitly denial access list.

    Ontology-based specific and exhaustive user profiles for constraint information fusion for multi-agents

    Get PDF
    Intelligent agents are an advanced technology utilized in Web Intelligence. When searching information from a distributed Web environment, information is retrieved by multi-agents on the client site and fused on the broker site. The current information fusion techniques rely on cooperation of agents to provide statistics. Such techniques are computationally expensive and unrealistic in the real world. In this paper, we introduce a model that uses a world ontology constructed from the Dewey Decimal Classification to acquire user profiles. By search using specific and exhaustive user profiles, information fusion techniques no longer rely on the statistics provided by agents. The model has been successfully evaluated using the large INEX data set simulating the distributed Web environment

    Programming agent-based demographic models with cross-state and message-exchange dependencies: A study with speculative PDES and automatic load-sharing

    Get PDF
    Agent-based modeling and simulation is a versatile and promising methodology to capture complex interactions among entities and their surrounding environment. A great advantage is its ability to model phenomena at a macro scale by exploiting simpler descriptions at a micro level. It has been proven effective in many fields, and it is rapidly becoming a de-facto standard in the study of population dynamics. In this article we study programmability and performance aspects of the last-generation ROOT-Sim speculative PDES environment for multi/many-core shared-memory architectures. ROOT-Sim transparently offers a programming model where interactions can be based on both explicit message passing and in-place state accesses. We introduce programming guidelines for systematic exploitation of these facilities in agent-based simulations, and we study the effects on performance of an innovative load-sharing policy targeting these types of dependencies. An experimental assessment with synthetic and real-world applications is provided, to assess the validity of our proposal

    funcX: A Federated Function Serving Fabric for Science

    Full text link
    Exploding data volumes and velocities, new computational methods and platforms, and ubiquitous connectivity demand new approaches to computation in the sciences. These new approaches must enable computation to be mobile, so that, for example, it can occur near data, be triggered by events (e.g., arrival of new data), be offloaded to specialized accelerators, or run remotely where resources are available. They also require new design approaches in which monolithic applications can be decomposed into smaller components, that may in turn be executed separately and on the most suitable resources. To address these needs we present funcX---a distributed function as a service (FaaS) platform that enables flexible, scalable, and high performance remote function execution. funcX's endpoint software can transform existing clouds, clusters, and supercomputers into function serving systems, while funcX's cloud-hosted service provides transparent, secure, and reliable function execution across a federated ecosystem of endpoints. We motivate the need for funcX with several scientific case studies, present our prototype design and implementation, show optimizations that deliver throughput in excess of 1 million functions per second, and demonstrate, via experiments on two supercomputers, that funcX can scale to more than more than 130000 concurrent workers.Comment: Accepted to ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC 2020). arXiv admin note: substantial text overlap with arXiv:1908.0490

    Una comparación de algoritmos basados en trayectoria granular para el problema de localización y ruteo con flota heterogénea (LRPH)

    Get PDF
    Indexación: Scopus.We consider the Location-Routing Problem with Heterogeneous Fleet (LRPH) in which the goal is to determine the depots to be opened, the customers to be assigned to each open depot, and the corresponding routes fulfilling the demand of the customers and by considering a heterogeneous fleet. We propose a comparison of granular approaches of Simulated Annealing (GSA), of Variable Neighborhood Search (GVNS) and of a probabilistic Tabu Search (pGTS) for the LRPH. Thus, the proposed approaches consider a subset of the search space in which non-favorable movements are discarded regarding a granularity factor. The proposed algorithms are experimentally compared for the solution of the LRPH, by taking into account the CPU time and the quality of the solutions obtained on the instances adapted from the literature. The computational results show that algorithm GSA is able to obtain high quality solutions within short CPU times, improving the results obtained by the other proposed approaches.https://revistas.unal.edu.co/index.php/dyna/article/view/55533/5896
    • …
    corecore