833 research outputs found

    Confronting Grand Challenges in environmental fluid mechanics

    Get PDF
    Environmental fluid mechanics underlies a wealth of natural, industrial and, by extension, societal challenges. In the coming decades, as we strive towards a more sustainable planet, there are a wide range of grand challenge problems that need to be tackled, ranging from fundamental advances in understanding and modeling of stratified turbulence and consequent mixing, to applied studies of pollution transport in the ocean, atmosphere and urban environments. A workshop was organized in the Les Houches School of Physics in France in January 2019 with the objective of gathering leading figures in the field to produce a road map for the scientific community. Five subject areas were addressed: multiphase flow, stratified flow, ocean transport, atmospheric and urban transport, and weather and climate prediction. This article summarizes the discussions and outcomes of the meeting, with the intent of providing a resource for the community going forward

    How does government expenditure impact sustainable development? Studying the multidimensional link between budgets and development gaps

    Get PDF
    Abstract We develop a bottom-up causal framework to study the impact of public spending on high-dimensional and interdependent policy spaces in the context of socioeconomic and environmental development. Using data across 140 countries, we estimate the indicator-country-specific development gaps that will remain open in 2030. We find large heterogeneity in development gaps, and non-linear responses to changes in the total amount of government expenditure. Importantly, our method identifies bounds to how much a gap can be reduced by 2030 through sheer increments in public spending. We show that these structural bottlenecks cannot be addressed through expenditure on the existing government programs, but require novel micro-policies intended to affect behaviors, technologies, and organizational practices. One particular set of bottlenecks that stands out relates to the environmental issues contained in the sustainable development goals 14 and 15

    Policy priority inference: A computational framework to analyze the allocation of resources for the sustainable development goals

    Get PDF
    We build a computational framework to support the planning of development and the evaluation of budgetary strategies toward the 2030 Agenda. The methodology takes into account some of the complexities of the political economy underpinning the policymaking process: the multidimensionality of development, the interlinkages between these dimensions, and the inefficiencies of policy interventions, as well as institutional factors that promote or discourage these inefficiencies. The framework is scalable and usable even with limited publicly available information: development-indicator data. However, it can be further refined as more data becomes available, for example, on public expenditure. We demonstrate its usage through an application for the Mexican federal government. For this, we infer historical policy priorities, that is, the non-observable allocations of transformative resources that generated past changes in development indicators. We also show how to use the tool to assess the feasibility of development goals, to measure policy coherence, and to identify accelerators. Overall, the framework and its computational tools allow policymakers and other stakeholders to embrace a complexity (and a quantitative) view to tackle the challenges of the Sustainable Development Goals

    Sustainable Development Report: Blockchain, the Web3 & the SDGs

    Get PDF
    This is an output paper of the applied research that was conducted between July 2018 - October 2019 funded by the Austrian Development Agency (ADA) and conducted by the Research Institute for Cryptoeconomics at the Vienna University of Economics and Business and RCE Vienna (Regional Centre of Expertise on Education for Sustainable Development).Series: Working Paper Series / Institute for Cryptoeconomics / Interdisciplinary Researc

    Sustainable Development Report: Blockchain, the Web3 & the SDGs

    Get PDF
    This is an output paper of the applied research that was conducted between July 2018 - October 2019 funded by the Austrian Development Agency (ADA) and conducted by the Research Institute for Cryptoeconomics at the Vienna University of Economics and Business and RCE Vienna (Regional Centre of Expertise on Education for Sustainable Development).Series: Working Paper Series / Institute for Cryptoeconomics / Interdisciplinary Researc

    PLANNING AND DESIGN OF EXPRESS LANES CONNECTING TWO HIGHWAYS IN MIAMI, FLORIDA, USA

    Get PDF
    Rising traffic and congestion in urban areas increases a demand for long bridges and interchanges. However, construction and designing such bridges evolve the infrastructure due to being permanently affected by safety, environment and budget. Therefore, there is a variety of bridge construction types that are chosen depending on the location and several parameters such as feasibility, safety maintainability, cost, and simplicity of construction. Over 60 years, precast prestressed concrete girders have been widely used all over the USA owing to their low life-cycle cost, endurance and modularity..

    Compaction Quality Assurance Specifications of Unbound Materials

    Get PDF
    Compaction quality control/assurance of unbound geomaterials is one of the crucial components in pavement and embankment construction to ensure their performance, stability, and sustainability. Conventional density-based methods such as nuclear density gauge to determine the compaction quality have been widely used due to the straightforward relationship between the readings and targeted material property. Recent modifications in construction standards and the introduction of the Mechanistic-Empirical Pavement Design Guide have inspired a growing interest in developing and implementing strength/stiffness-based compaction control quality assurance (QA) specifications. Numerous studies have been dedicated to investigating the efficiency and effectiveness of the stiffness-based compaction QA tools. This paper presents a comprehensive review of the recent compaction QA relevant literature and surveys. Findings of different approaches for studying QA devices, and the main results of the existing models, experiments, and engineering practices were summarized. Several in situ spot QA technologies, including the latest compaction QA technologies [e.g., the lightweight deflectometer (LWD)], were highlighted, and their efficiency and effectiveness were compared. The review also summarized the intercorrelations between different devices, the correlations between in situ QA device readings and mechanical properties of unbound material, findings of the numerical simulations, and case studies and current practices using different QA tools. The recommendations for future research needs and practical implementations were identified and discussed
    corecore