20,155 research outputs found

    Multiscale modeling of granular flows with application to crowd dynamics

    Full text link
    In this paper a new multiscale modeling technique is proposed. It relies on a recently introduced measure-theoretic approach, which allows to manage the microscopic and the macroscopic scale under a unique framework. In the resulting coupled model the two scales coexist and share information. This allows to perform numerical simulations in which the trajectories and the density of the particles affect each other. Crowd dynamics is the motivating application throughout the paper.Comment: 30 pages, 9 figure

    Multiscale modeling of granular flows with application to crowd dynamics

    Full text link
    In this paper a new multiscale modeling technique is proposed. It relies on a recently introduced measure-theoretic approach, which allows to manage the microscopic and the macroscopic scale under a unique framework. In the resulting coupled model the two scales coexist and share information. This allows to perform numerical simulations in which the trajectories and the density of the particles affect each other. Crowd dynamics is the motivating application throughout the paper.Comment: 30 pages, 9 figure

    Translational and rotational non-Gaussianities in homogeneous freely evolving granular gases

    Full text link
    The importance of roughness in the modeling of granular gases has been increasingly considered in recent years. In this paper, a freely evolving homogeneous granular gas of inelastic and rough hard disks or spheres is studied under the assumptions of the Boltzmann kinetic equation. The homogeneous base state reached by the system is studied from a theoretical point of view using a Sonine approximation, in contrast to a previous Maxwellian approach. A general theoretical description is done in terms of dtd_t translational and drd_r rotational degrees of freedom, which accounts for the cases of spheres (dt=dr=3d_t=d_r=3) and disks (dt=2d_t=2, dr=1d_r=1) within a unified framework. The non-Gaussianities of the velocity distribution function of this state are determined by means of the first nontrivial cumulants and by the derivation of non-Maxwellian high-velocity tails. The results are validated by computer simulations using direct simulation Monte Carlo and event-driven molecular dynamics algorithms.Comment: 34 pages (including two appendices with 2 pages, and supplementary material with 17 pages), 13 figures (including 4 figures in the supplementary material

    Coupled DEM-LBM method for the free-surface simulation of heterogeneous suspensions

    Full text link
    The complexity of the interactions between the constituent granular and liquid phases of a suspension requires an adequate treatment of the constituents themselves. A promising way for numerical simulations of such systems is given by hybrid computational frameworks. This is naturally done, when the Lagrangian description of particle dynamics of the granular phase finds a correspondence in the fluid description. In this work we employ extensions of the Lattice-Boltzmann Method for non-Newtonian rheology, free surfaces, and moving boundaries. The models allows for a full coupling of the phases, but in a simplified way. An experimental validation is given by an example of gravity driven flow of a particle suspension

    Unified anisotropic elastoplastic model for sand

    Get PDF
    This paper presents a unified approach to model the influence of fabric anisotropy and its evolution on both the elastic and plastic responses of sand. A physically based fabric tensor is employed to characterize the anisotropic internal structure of sand. It is incorporated into the nonlinear elastic stiffness tensor to describe anisotropic elasticity, and is further included explicitly in the yield function, the dilatancy relation, and the flow rule to characterize the anisotropic plastic sand response. The physical change of fabric with loading is described by a fabric evolution law driven by plastic strain, which influences both the elastic and the plastic sand behavior. The proposed model furnishes a comprehensive consideration of both anisotropic elasticity and anisotropic plasticity, particularly the nonlinear change of elastic stiffness with the evolution of fabric during the plastic deformation of sand. It offers a natural and rational way to capture the noncoaxial behavior in sand caused by anisotropy. It also facilitates easy determination of the initial anisotropy in sand based on simple laboratory tests and avoids the various arbitrary assumptions on its value made by many previous studies. The model predictions on sand behavior compare well with test data

    Modeling the evolution of natural cliffs subject to weathering. 2, Discrete element approach

    Get PDF
    The evolution of slopes subjected to weathering has been modeled by assuming Mohr-Coulomb behavior and by using a numerical approach based on the discrete element method (DEM). According to this method, soil and/or rock are represented by an assembly of bonded particles. Particle bonds are subject to progressive weakening, and so the material weathering and removal processes are modeled. Slope instability and material movement follow the decrease of material strength in space and time with the only assumption concerning the weathering distribution within the slope. First, the case of cliffs subject to strong erosion (weathering-limited conditions) and uniform weathering was studied to compare the results of the DEM approach with the limit analysis approach. Second, transport-limited slopes subject to nonuniform slope weathering were studied. Results have been compared with experimental data and other geomorphologic models from the literature (Fisher-Lehmann and Bakker–Le Heux). The flux of material from the slope is modeled assuming degradation both in space and time

    Symbolic modeling of structural relationships in the Foundational Model of Anatomy

    Get PDF
    The need for a sharable resource that can provide deep anatomical knowledge and support inference for biomedical applications has recently been the driving force in the creation of biomedical ontologies. Previous attempts at the symbolic representation of anatomical relationships necessary for such ontologies have been largely limited to general partonomy and class subsumption. We propose an ontology of anatomical relationships beyond class assignments and generic part-whole relations and illustrate the inheritance of structural attributes in the Digital Anatomist Foundational Model of Anatomy. Our purpose is to generate a symbolic model that accommodates all structural relationships and physical properties required to comprehensively and explicitly describe the physical organization of the human body
    corecore