10 research outputs found

    Oscillatory architecture of memory circuits

    Get PDF
    The coordinated activity between remote brain regions underlies cognition and memory function. Although neuronal oscillations have been proposed as a mechanistic substrate for the coordination of information transfer and memory consolidation during sleep, little is known about the mechanisms that support the widespread synchronization of brain regions and the relationship of neuronal dynamics with other bodily rhythms, such as breathing. During exploratory behavior, the hippocampus and the prefrontal cortex are organized by theta oscillations, known to support memory encoding and retrieval, while during sleep the same structures are dominated by slow oscillations that are believed to underlie the consolidation of recent experiences. The expression of conditioned fear and extinction memories relies on the coordinated activity between the mPFC and the basolateral amygdala (BLA), a neuronal structure encoding associative fear memories. However, to date, the mechanisms allowing this long-range network synchronization of neuronal activity between the mPFC and BLA during fear behavior remain virtually unknown. Using a combination of extracellular recordings and open- and closed-loop optogenetic manipulations, we investigated the oscillatory and coding mechanisms mediating the organization and coupling of the limbic circuit in the awake and asleep brain, as well as during memory encoding and retrieval. We found that freezing, a behavioral expression of fear, is tightly associated with an internally generated brain state that manifests in sustained 4Hz oscillatory dynamics in prefrontal-amygdala circuits. 4Hz oscillations accurately predict the onset and termination of the freezing state. These oscillations synchronize prefrontal-amygdala circuits and entrain neuronal activity to dynamically regulate the development of neuronal ensembles. This enables the precise timing of information transfer between the two structures and the expression of fear responses. Optogenetic induction of prefrontal 4Hz oscillations promotes freezing behavior and the formation of long-lasting fear memory, while closed-loop phase specific manipulations bidirectionally modulate fear expression. Our results unravel a physiological signature of fear memory and identify a novel internally generated brain state, characterized by 4Hz oscillations. This oscillation enables the temporal coordination and information transfer in the prefrontal-amygdala circuit via a phase-specific coding mechanism, facilitating the encoding and expression of fear memory. In the search for the origin of this oscillation, we focused our attention on breathing, the most fundamental and ubiquitous rhythmic activity in life. Using large-scale extracellular recordings from a number of structures, including the medial prefrontal cortex, hippocampus, thalamus, amygdala and nucleus accumbens in mice we identified and characterized the entrainment by breathing of a host of network dynamics across the limbic circuit. We established that fear-related 4Hz oscillations are a state-specific manifestation of this cortical entrainment by the respiratory rhythm. We characterized the translaminar and transregional profile of this entrainment and demonstrated a causal role of breathing in synchronizing neuronal activity and network dynamics between these structures in a variety of behavioral scenarios in the awake and sleep state. We further revealed a dual mechanism of respiratory entrainment, in the form of an intracerebral corollary discharge that acts jointly with an olfactory reafference to coordinate limbic network dynamics, such as hippocampal ripples and cortical UP and DOWN states, involved in memory consolidation. Respiration provides a perennial stream of rhythmic input to the brain. In addition to its role as the condicio sine qua non for life, here we provide evidence that breathing rhythm acts as a global pacemaker for the brain, providing a reference signal that enables the integration of exteroceptive and interoceptive inputs with the internally generated dynamics of the hippocampus and the neocortex. Our results highlight breathing, a perennial rhythmic input to the brain, as an oscillatory scaffold for the functional coordination of the limbic circuit, enabling the segregation and integration of information flow across neuronal networks

    A model of delta frequency neuronal network activity and theta-gamma interactions in rat sensorimotor cortex in vitro

    Get PDF
    In recent decades, advances in electrophysiological techniques have enabled understanding of neuronal network activity, with in vitro brain slices providing insights into the mechanisms underlying oscillations at various frequency ranges. Understanding the electrical and neuro-pharmacological properties of brain networks using selective receptor modulators in native tissue allows to compare such properties with those in disease models (e.g. epilepsy and Parkinson’s). In vivo and in vitro studies have implicated M1 in execution of voluntary movements and, from both local network in vitro and whole brain in vivo perspectives. M1 has been shown to generate oscillatory activity at various frequencies, including beta frequency and nested theta and gamma oscillations similar to those of rat hippocampus. In vivo studies also confirmed slow wave oscillations in somatosensory cortex including delta and theta band activity. However, despite these findings, non-thalamic mechanisms underlying cortical delta oscillations remain almost unexplored. Therefore, we determined to explore these oscillations in vitro in M1 and S1. Using a modified sagittal plane slice preparation with aCSF containing neuroprotectants, we have greatly improved brain slice viability, enabling the generation and study of dual rhythms (theta and gamma oscillations) in deep layers (LV) of the in vitro sensorimotor slice (M1 and S1) in the presence of KA and CCh. We found that theta-gamma activity in M1 is led by S1 and that the amplitude of gamma oscillations was (phase-amplitude) coupled to theta phase in both regions. Oscillations were dependent on GABAAR, AMPAR and NMDAR and were augmented by DAR activation. Experiments using cut/reduced slices showed both M1 and S1 could be intrinsic generators of oscillatory activity. Delta oscillations were induced in M1 and S1 by maintaining a neuromodulatory state mimicking deep sleep, characterised by low dopaminergic and low cholinergic tone, achieved using DAR blockade and low CCh. Delta activity depends on GABAAR, GABABR and AMPAR but not NMDAR, and once induced was not reversible. Unlike theta-gamma activity, delta was led by M1, and activity took >20mins to develop in S1 after establishement of peak power in M1. Unlike M1, S1 alone was unable to support delta activity. Dopamine modulates network activity in M1 and it is known that fast-spiking interneurons are the pacemakers of network rhythmogenesis. Recent studies reported that dopamine (DA) controled Itonic in medium spiny, ventrobasal thalamus and nucleus accumbens neurons by modulation of GABARs or cation channels. In the current study, voltage-clamp whole cell recordings were performed in fast spiking interneurons (FS cells) in Layer V of M1. These recordings revealed tonic and phasic GABAAR inhibition and when DA was bath applied, a slow inward current (IDA) was induced. IDA was mediated by non-specific cationic TRPC channels following D2R-like receptor activation. Overall, my studies show the strong interdependence of theta-gamma rhythmogenesis between M1 and S1, dominanace of M1 at delta frequency and the crucial role of dopamine in controlling FS cell activity. Further exploration of these rhythms in models of pathological conditions such as Parkinson`s disease and Epilepsy may provide insights into network changes underlying these disease conditions

    Towards an Understanding of Tinnitus Heterogeneity

    Get PDF

    Towards an Understanding of Tinnitus Heterogeneity

    Get PDF

    Towards an Understanding of Tinnitus Heterogeneity

    Get PDF
    corecore