19,468 research outputs found

    Grammatical codes of trees

    Get PDF
    AbstractThe problem of coding (chain free) trees by words where the length of the word coding a tree t equals the number of leaves of t is investigated. The notion of an insertive strict code is introduced and investigated—these are codes of a grammatical nature. It is shown that there are exactly 120 insertive strict codes. A characterization of these codes (and their various subclasses) is given in grammatical terms

    Towards case-based parsing : are chunks reliable indicators for syntax trees?

    Get PDF
    This paper presents an approach to the question whether it is possible to construct a parser based on ideas from case-based reasoning. Such a parser would employ a partial analysis of the input sentence to select a (nearly) complete syntax tree and then adapt this tree to the input sentence. The experiments performed on German data from the Tüba-D/Z treebank and the KaRoPars partial parser show that a wide range of levels of generality can be reached, depending on which types of information are used to determine the similarity between input sentence and training sentences. The results are such that it is possible to construct a case-based parser. The optimal setting out of those presented here need to be determined empirically

    How to compare treebanks

    Get PDF
    Recent years have seen an increasing interest in developing standards for linguistic annotation, with a focus on the interoperability of the resources. This effort, however, requires a profound knowledge of the advantages and disadvantages of linguistic annotation schemes in order to avoid importing the flaws and weaknesses of existing encoding schemes into the new standards. This paper addresses the question how to compare syntactically annotated corpora and gain insights into the usefulness of specific design decisions. We present an exhaustive evaluation of two German treebanks with crucially different encoding schemes. We evaluate three different parsers trained on the two treebanks and compare results using EVALB, the Leaf-Ancestor metric, and a dependency-based evaluation. Furthermore, we present TePaCoC, a new testsuite for the evaluation of parsers on complex German grammatical constructions. The testsuite provides a well thought-out error classification, which enables us to compare parser output for parsers trained on treebanks with different encoding schemes and provides interesting insights into the impact of treebank annotation schemes on specific constructions like PP attachment or non-constituent coordination

    Information Compression, Intelligence, Computing, and Mathematics

    Full text link
    This paper presents evidence for the idea that much of artificial intelligence, human perception and cognition, mainstream computing, and mathematics, may be understood as compression of information via the matching and unification of patterns. This is the basis for the "SP theory of intelligence", outlined in the paper and fully described elsewhere. Relevant evidence may be seen: in empirical support for the SP theory; in some advantages of information compression (IC) in terms of biology and engineering; in our use of shorthands and ordinary words in language; in how we merge successive views of any one thing; in visual recognition; in binocular vision; in visual adaptation; in how we learn lexical and grammatical structures in language; and in perceptual constancies. IC via the matching and unification of patterns may be seen in both computing and mathematics: in IC via equations; in the matching and unification of names; in the reduction or removal of redundancy from unary numbers; in the workings of Post's Canonical System and the transition function in the Universal Turing Machine; in the way computers retrieve information from memory; in systems like Prolog; and in the query-by-example technique for information retrieval. The chunking-with-codes technique for IC may be seen in the use of named functions to avoid repetition of computer code. The schema-plus-correction technique may be seen in functions with parameters and in the use of classes in object-oriented programming. And the run-length coding technique may be seen in multiplication, in division, and in several other devices in mathematics and computing. The SP theory resolves the apparent paradox of "decompression by compression". And computing and cognition as IC is compatible with the uses of redundancy in such things as backup copies to safeguard data and understanding speech in a noisy environment
    corecore