66 research outputs found

    Monadic second-order definable graph orderings

    Full text link
    We study the question of whether, for a given class of finite graphs, one can define, for each graph of the class, a linear ordering in monadic second-order logic, possibly with the help of monadic parameters. We consider two variants of monadic second-order logic: one where we can only quantify over sets of vertices and one where we can also quantify over sets of edges. For several special cases, we present combinatorial characterisations of when such a linear ordering is definable. In some cases, for instance for graph classes that omit a fixed graph as a minor, the presented conditions are necessary and sufficient; in other cases, they are only necessary. Other graph classes we consider include complete bipartite graphs, split graphs, chordal graphs, and cographs. We prove that orderability is decidable for the so called HR-equational classes of graphs, which are described by equation systems and generalize the context-free languages

    On the Monadic Second-Order Transduction Hierarchy

    Full text link
    We compare classes of finite relational structures via monadic second-order transductions. More precisely, we study the preorder where we set C \subseteq K if, and only if, there exists a transduction {\tau} such that C\subseteq{\tau}(K). If we only consider classes of incidence structures we can completely describe the resulting hierarchy. It is linear of order type {\omega}+3. Each level can be characterised in terms of a suitable variant of tree-width. Canonical representatives of the various levels are: the class of all trees of height n, for each n \in N, of all paths, of all trees, and of all grids

    Fully polynomial FPT algorithms for some classes of bounded clique-width graphs

    Get PDF
    Parameterized complexity theory has enabled a refined classification of the difficulty of NP-hard optimization problems on graphs with respect to key structural properties, and so to a better understanding of their true difficulties. More recently, hardness results for problems in P were achieved using reasonable complexity theoretic assumptions such as: Strong Exponential Time Hypothesis (SETH), 3SUM and All-Pairs Shortest-Paths (APSP). According to these assumptions, many graph theoretic problems do not admit truly subquadratic algorithms, nor even truly subcubic algorithms (Williams and Williams, FOCS 2010 and Abboud, Grandoni, Williams, SODA 2015). A central technique used to tackle the difficulty of the above mentioned problems is fixed-parameter algorithms for polynomial-time problems with polynomial dependency in the fixed parameter (P-FPT). This technique was introduced by Abboud, Williams and Wang in SODA 2016 and continued by Husfeldt (IPEC 2016) and Fomin et al. (SODA 2017), using the treewidth as a parameter. Applying this technique to clique-width, another important graph parameter, remained to be done. In this paper we study several graph theoretic problems for which hardness results exist such as cycle problems (triangle detection, triangle counting, girth, diameter), distance problems (diameter, eccentricities, Gromov hyperbolicity, betweenness centrality) and maximum matching. We provide hardness results and fully polynomial FPT algorithms, using clique-width and some of its upper-bounds as parameters (split-width, modular-width and P_4P\_4-sparseness). We believe that our most important result is an O(k4â‹…n+m){\cal O}(k^4 \cdot n + m)-time algorithm for computing a maximum matching where kk is either the modular-width or the P_4P\_4-sparseness. The latter generalizes many algorithms that have been introduced so far for specific subclasses such as cographs, P_4P\_4-lite graphs, P_4P\_4-extendible graphs and P_4P\_4-tidy graphs. Our algorithms are based on preprocessing methods using modular decomposition, split decomposition and primeval decomposition. Thus they can also be generalized to some graph classes with unbounded clique-width

    Algorithmic Meta-Theorems

    Full text link
    Algorithmic meta-theorems are general algorithmic results applying to a whole range of problems, rather than just to a single problem alone. They often have a "logical" and a "structural" component, that is they are results of the form: every computational problem that can be formalised in a given logic L can be solved efficiently on every class C of structures satisfying certain conditions. This paper gives a survey of algorithmic meta-theorems obtained in recent years and the methods used to prove them. As many meta-theorems use results from graph minor theory, we give a brief introduction to the theory developed by Robertson and Seymour for their proof of the graph minor theorem and state the main algorithmic consequences of this theory as far as they are needed in the theory of algorithmic meta-theorems

    Automated Design of Dynamic Programming Schemes for RNA Folding with Pseudoknots

    Get PDF
    Despite being a textbook application of dynamic programming (DP) and routine task in RNA structure analysis, RNA secondary structure prediction remains challenging whenever pseudoknots come into play. To circumvent the NP-hardness of energy minimization in realistic energy models, specialized algorithms have been proposed for restricted conformation classes that capture the most frequently observed configurations. While these methods rely on hand-crafted DP schemes, we generalize and fully automatize the design of DP pseudoknot prediction algorithms. We formalize the problem of designing DP algorithms for an (infinite) class of conformations, modeled by (a finite number of) fatgraphs, and automatically build DP schemes minimizing their algorithmic complexity. We propose an algorithm for the problem, based on the tree-decomposition of a well-chosen representative structure, which we simplify and reinterpret as a DP scheme. The algorithm is fixed-parameter tractable for the tree-width tw of the fatgraph, and its output represents a ?(n^{tw+1}) algorithm for predicting the MFE folding of an RNA of length n. Our general framework supports general energy models, partition function computations, recursive substructures and partial folding, and could pave the way for algebraic dynamic programming beyond the context-free case

    Exploiting graph structures for computational efficiency

    Get PDF
    Coping with NP-hard graph problems by doing better than simply brute force is a field of significant practical importance, and which have also sparked wide theoretical interest. One route to cope with such hard graph problems is to exploit structures which can possibly be found in the input data or in the witness for a solution. In the framework of parameterized complexity, we attempt to quantify such structures by defining numbers which describe "how structured" the graph is. We then do a fine-grained classification of its computational complexity, where not only the input size, but also the structural measure in question come in to play. There is a number of structural measures called width parameters, which includes treewidth, clique-width, and mim-width. These width parameters can be compared by how many classes of graphs that have bounded width. In general there is a tradeoff; if more graph classes have bounded width, then fewer problems can be efficiently solved with the aid of a small width; and if a width is bounded for only a few graph classes, then it is easier to design algorithms which exploit the structure described by the width parameter. For each of the mentioned width parameters, there are known meta-theorems describing algorithmic results for a wide array of graph problems. Hence, showing that decompositions with bounded width can be found for a certain graph class yields algorithmic results for the given class. In the current thesis, we show that several graph classes have bounded width measures, which thus gives algorithmic consequences. Algorithms which are FPT or XP parameterized by width parameters are exploiting structure of the input graph. However, it is also possible to exploit structures that are required of a witness to the solution. We use this perspective to give a handful of polynomial-time algorithms for NP-hard problems whenever the witness belongs to certain graph classes. It is also possible to combine structures of the input graph with structures of the solution witnesses in order to obtain parameterized algorithms, when each structure individually is provably insufficient to provide so under standard complexity assumptions. We give an example of this in the final chapter of the thesis
    • …
    corecore