127 research outputs found

    Assessing hyper-heuristic performance

    Get PDF
    Limited attention has been paid to assessing the generality performance of hyper-heuristics. The performance of hyper-heuristics has been predominately assessed in terms of optimality which is not ideal as the aim of hyper-heuristics is not to be competitive with state of the art approaches but rather to raise the level of generality, i.e. the ability of a technique to produce good results for different problem instances or problems rather than the best results for some instances and poor results for others. Furthermore from existing literature in this area it is evident that different hyper-heuristics aim to achieve different levels of generality and need to be assessed as such. To cater for this the paper firstly presents a new taxonomy of four different levels of generality that can be attained by a hyper-heuristic based on a survey of the literature. The paper then proposes a performance measure to assess the performance of different types of hyper-heuristics at the four levels of generality in terms of generality rather than optimality. Three case studies from the literature are used to demonstrate the application of the generality performance measure. The paper concludes by examining how the generality measure can be combined with measures of other performance criteria, such as optimality, to assess hyper-heuristic performance on more than one criterion

    Hyper‐Heuristics and Metaheuristics for Selected Bio‐Inspired Combinatorial Optimization Problems

    Get PDF
    Many decision and optimization problems arising in bioinformatics field are time demanding, and several algorithms are designed to solve these problems or to improve their current best solution approach. Modeling and implementing a new heuristic algorithm may be time‐consuming but has strong motivations: on the one hand, even a small improvement of the new solution may be worth the long time spent on the construction of a new method; on the other hand, there are problems for which good‐enough solutions are acceptable which could be achieved at a much lower computational cost. In the first case, specially designed heuristics or metaheuristics are needed, while the latter hyper‐heuristics can be proposed. The paper will describe both approaches in different domain problems

    QAL-BP: An Augmented Lagrangian Quantum Approach for Bin Packing Problem

    Full text link
    The bin packing is a well-known NP-Hard problem in the domain of artificial intelligence, posing significant challenges in finding efficient solutions. Conversely, recent advancements in quantum technologies have shown promising potential for achieving substantial computational speedup, particularly in certain problem classes, such as combinatorial optimization. In this study, we introduce QAL-BP, a novel Quadratic Unconstrained Binary Optimization (QUBO) formulation designed specifically for bin packing and suitable for quantum computation. QAL-BP utilizes the augmented Lagrangian method to incorporate the bin packing constraints into the objective function while also facilitating an analytical estimation of heuristic, but empirically robust, penalty multipliers. This approach leads to a more versatile and generalizable model that eliminates the need for empirically calculating instance-dependent Lagrangian coefficients, a requirement commonly encountered in alternative QUBO formulations for similar problems. To assess the effectiveness of our proposed approach, we conduct experiments on a set of bin-packing instances using a real Quantum Annealing device. Additionally, we compare the results with those obtained from two different classical solvers, namely simulated annealing and Gurobi. The experimental findings not only confirm the correctness of the proposed formulation but also demonstrate the potential of quantum computation in effectively solving the bin-packing problem, particularly as more reliable quantum technology becomes available.Comment: 14 pages, 4 figures, 1 tabl

    Volumetric Techniques for Product Routing and Loading Optimisation in Industry 4.0: A Review

    Get PDF
    Industry 4.0 has become a crucial part in the majority of processes, components, and related modelling, as well as predictive tools that allow a more efficient, automated and sustainable approach to industry. The availability of large quantities of data, and the advances in IoT, AI, and data-driven frameworks, have led to an enhanced data gathering, assessment, and extraction of actionable information, resulting in a better decision-making process. Product picking and its subsequent packing is an important area, and has drawn increasing attention for the research community. However, depending of the context, some of the related approaches tend to be either highly mathematical, or applied to a specific context. This article aims to provide a survey on the main methods, techniques, and frameworks relevant to product packing and to highlight the main properties and features that should be further investigated to ensure a more efficient and optimised approach

    A Lifelong Learning Hyper-heuristic Method for Bin Packing.

    Get PDF
    We describe a novel Hyper-heuristic system which continuously learns over time to solve a combinatorial optimisation problem. The system continuously generates new heuristics and samples problems from its environment; representative problems and heuristics are incorporated into a self-sustaining network of interacting entities in- spired by methods in Artificial Immune Systems.The network is plastic in both its structure and content leading to the following properties: it exploits existing knowl- edge captured in the network to rapidly produce solutions; it can adapt to new prob- lems with widely differing characteristics; it is capable of generalising over the prob- lem space. The system is tested on a large corpus of 3968 new instances of 1D-bin packing problems as well as on 1370 existing problems from the literature; it shows excellent performance in terms of the quality of solutions obtained across the datasets and in adapting to dynamically changing sets of problem instances compared to pre- vious approaches. As the network self-adapts to sustain a minimal repertoire of both problems and heuristics that form a representative map of the problem space, the system is further shown to be computationally efficient and therefore scalable

    Novel Hyper-heuristics Applied to the Domain of Bin Packing

    Get PDF
    Principal to the ideology behind hyper-heuristic research is the desire to increase the level of generality of heuristic procedures so that they can be easily applied to a wide variety of problems to produce solutions of adequate quality within practical timescales.This thesis examines hyper-heuristics within a single problem domain, that of Bin Packing where the benefits to be gained from selecting or generating heuristics for large problem sets with widely differing characteristics is considered. Novel implementations of both selective and generative hyper-heuristics are proposed. The former approach attempts to map the characteristics of a problem to the heuristic that best solves it while the latter uses Genetic Programming techniques to automate the heuristic design process. Results obtained using the selective approach show that solution quality was improved significantly when contrasted to the performance of the best single heuristic when applied to large sets of diverse problem instances. Although enforcing the benefits to be gained by selecting from a range of heuristics the study also highlighted the lack of diversity in human designed algorithms. Using Genetic Programming techniques to automate the heuristic design process allowed both single heuristics and collectives of heuristics to be generated that were shown to perform significantly better than their human designed counterparts. The thesis concludes by combining both selective and generative hyper-heuristic approaches into a novel immune inspired system where heuristics that cover distinct areas of the problem space are generated. The system is shown to have a number of advantages over similar cooperative approaches in terms of its plasticity, efficiency and long term memory. Extensive testing of all of the hyper-heuristics developed on large sets of both benchmark and newly generated problem instances enforces the utility of hyper-heuristics in their goal of producing fast understandable procedures that give good quality solutions for a range of problems with widely varying characteristics

    A Heuristically Generated Metric Approach to the Solution of Chase Problem

    Get PDF
    In this work, heuristic, hyper-heuristic, and metaheuristic approaches are reviewed. Distance metrics are also examined to solve the “puzzle problems by searching” in AI. A viewpoint is brought by introducing the so-called Heuristically Generated Angular Metric Approach (HAMA) through the explanation of the metrics world. Distance metrics are applied to “cat and mouse” problem where cat and mouse makes smart moves relative to each other and therefore makes more appropriate decisions. The design is built around Fuzzy logic control to determine route finding between the pursuer and prey. As the puzzle size increases, the effect of HAMA can be distinguished more clearly in terms of computation time towards a solution. Hence, mouse will gain more time in perceiving the incoming danger, thus increasing the percentage of evading the danger. ‘Caught and escape percentages vs. number of cats’ for three distance metrics have been created and the results evaluated comparatively. Given three termination criteria, it is never inconsistent to define two different objective functions: either the cat travels the distance to catch the mouse, or the mouse increases the percentage of escape from the cat

    Automation and Control

    Get PDF
    Advances in automation and control today cover many areas of technology where human input is minimized. This book discusses numerous types and applications of automation and control. Chapters address topics such as building information modeling (BIM)–based automated code compliance checking (ACCC), control algorithms useful for military operations and video games, rescue competitions using unmanned aerial-ground robots, and stochastic control systems

    Metaheuristics For Solving Real World Employee Rostering and Shift Scheduling Problems

    Get PDF
    Optimising resources and making considerate decisions are central concerns in any responsible organisation aiming to succeed in efficiently achieving their goals. Careful use of resources can have positive outcomes in the form of fiscal savings, improved service levels, better quality products, improved awareness of diminishing returns and general output efficiency, regardless of field. Operational research techniques are advanced analytical tools used to improve managerial decision-making. There have been a variety of case studies where operational research techniques have been successfully applied to save millions of pounds. Operational research techniques have been successfully applied to a multitude of fields, including agriculture, policing, defence, conservation, air traffic control, and many more. In particular, management of resources in the form of employees is a challenging problem --- but one with the potential for huge improvements in efficiency. The problem this thesis tackles can be divided into two sub-problems; the personalised shift scheduling & employee rostering problem, and the roster pattern problem. The personalised shift scheduling & employee rostering problem involves the direct scheduling of employees to hours and days of week. This allows the creation of schedules which are tailored to individuals and allows a fine level over control over the results, but with at the cost of a large and challenging search space. The roster pattern problem instead takes existing patterns employees currently work, and uses these as a pool of potential schedules to be used. This reduces the search space but minimises the number of changes to existing employee schedules, which is preferable for personnel satisfaction. Existing research has shown that a variety of algorithms suit different problems and hybrid methods are found to typically outperform standalone ones in real-world contexts. Several algorithmic approaches for solving variations of the employee scheduling problem are considered in this thesis. Initially a VNS approach was used with a Metropolis-Hastings acceptance criterion. The second approach utilises ER&SR controlled by the EMCAC, which has only been used in the field of exam timetabling, and has not before been used within the domain of employee scheduling and rostering. ER&SR was then hybridised with our initial approach, producing ER&SR with VNS. Finally, ER&SR was hybridised into a matheuristic with Integer Programming and compared to the hybrid's individual components. A contribution of this thesis is evidence that the algorithm ER&SR has merit outside of the original sub-field of exam scheduling, and can be applied to shift scheduling and employee rostering. Further, ER&SR was hybridised and schedules produced by the hybridisations were found to be of higher quality than the standalone algorithm. In the literature review it was found that hybrid algorithms have become more popular in real-world problems in recent years, and this body of work has explored and continued this trend. Problem formulations in this thesis provide insight into creating constraints which satisfy the need for minimising employee dissatisfaction, particularly in regards to abrupt change. The research presented in this thesis has positively impacted a multinational and multibillion dollar field service operations company. This has been achieved by implementing a variety of techniques, including metaheuristics and a matheuristic, to schedule shifts and roster employees over a period of several months. This thesis showcases the research outputs by this project, and highlights the real-world impact of this research
    • 

    corecore