687 research outputs found

    emgr - The Empirical Gramian Framework

    Full text link
    System Gramian matrices are a well-known encoding for properties of input-output systems such as controllability, observability or minimality. These so-called system Gramians were developed in linear system theory for applications such as model order reduction of control systems. Empirical Gramian are an extension to the system Gramians for parametric and nonlinear systems as well as a data-driven method of computation. The empirical Gramian framework - emgr - implements the empirical Gramians in a uniform and configurable manner, with applications such as Gramian-based (nonlinear) model reduction, decentralized control, sensitivity analysis, parameter identification and combined state and parameter reduction

    Model reduction of networked passive systems through clustering

    Full text link
    In this paper, a model reduction procedure for a network of interconnected identical passive subsystems is presented. Here, rather than performing model reduction on the subsystems, adjacent subsystems are clustered, leading to a reduced-order networked system that allows for a convenient physical interpretation. The identification of the subsystems to be clustered is performed through controllability and observability analysis of an associated edge system and it is shown that the property of synchronization (i.e., the convergence of trajectories of the subsystems to each other) is preserved during reduction. The results are illustrated by means of an example.Comment: 7 pages, 2 figures; minor changes in the final version, as accepted for publication at the 13th European Control Conference, Strasbourg, Franc

    Reduced order models for control of fluids using the Eigensystem Realization Algorithm

    Full text link
    In feedback flow control, one of the challenges is to develop mathematical models that describe the fluid physics relevant to the task at hand, while neglecting irrelevant details of the flow in order to remain computationally tractable. A number of techniques are presently used to develop such reduced-order models, such as proper orthogonal decomposition (POD), and approximate snapshot-based balanced truncation, also known as balanced POD. Each method has its strengths and weaknesses: for instance, POD models can behave unpredictably and perform poorly, but they can be computed directly from experimental data; approximate balanced truncation often produces vastly superior models to POD, but requires data from adjoint simulations, and thus cannot be applied to experimental data. In this paper, we show that using the Eigensystem Realization Algorithm (ERA) \citep{JuPa-85}, one can theoretically obtain exactly the same reduced order models as by balanced POD. Moreover, the models can be obtained directly from experimental data, without the use of adjoint information. The algorithm can also substantially improve computational efficiency when forming reduced-order models from simulation data. If adjoint information is available, then balanced POD has some advantages over ERA: for instance, it produces modes that are useful for multiple purposes, and the method has been generalized to unstable systems. We also present a modified ERA procedure that produces modes without adjoint information, but for this procedure, the resulting models are not balanced, and do not perform as well in examples. We present a detailed comparison of the methods, and illustrate them on an example of the flow past an inclined flat plate at a low Reynolds number.Comment: 22 pages, 7 figure

    Balanced Truncation of Networked Linear Passive Systems

    Get PDF
    This paper studies model order reduction of multi-agent systems consisting of identical linear passive subsystems, where the interconnection topology is characterized by an undirected weighted graph. Balanced truncation based on a pair of specifically selected generalized Gramians is implemented on the asymptotically stable part of the full-order network model, which leads to a reduced-order system preserving the passivity of each subsystem. Moreover, it is proven that there exists a coordinate transformation to convert the resulting reduced-order model to a state-space model of Laplacian dynamics. Thus, the proposed method simultaneously reduces the complexity of the network structure and individual agent dynamics, and it preserves the passivity of the subsystems and the synchronization of the network. Moreover, it allows for the a priori computation of a bound on the approximation error. Finally, the feasibility of the method is demonstrated by an example
    • …
    corecore