4,133 research outputs found

    Application of cyclic block generalized gradient projection methods to Poisson blind deconvolution

    Get PDF
    The aim of this paper is to consider a modification of a block coordinate gradient projection method with Armijo linesearch along the descent direction in which the projection on the feasible set is performed according to a variable non Euclidean metric. The stationarity of the limit points of the resulting scheme has recently been proved under some general assumptions on the generalized gradient projections employed. Here we tested some examples of methods belonging to this class on a blind deconvolution problem from data affected by Poisson noise, and we illustrate the impact of the projection operator choice on the practical performances of the corresponding algorithm

    Riemannian thresholding methods for row-sparse and low-rank matrix recovery

    Get PDF
    In this paper, we present modifications of the iterative hard thresholding (IHT) method for recovery of jointly row-sparse and low-rank matrices. In particular, a Riemannian version of IHT is considered which significantly reduces computational cost of the gradient projection in the case of rank-one measurement operators, which have concrete applications in blind deconvolution. Experimental results are reported that show near-optimal recovery for Gaussian and rank-one measurements, and that adaptive stepsizes give crucial improvement. A Riemannian proximal gradient method is derived for the special case of unknown sparsity

    Riemannian thresholding methods for row-sparse and low-rank matrix recovery

    Get PDF
    In this paper, we present modifications of the iterative hard thresholding (IHT) method for recovery of jointly row-sparse and low-rank matrices. In particular a Riemannian version of IHT is considered which significantly reduces computational cost of the gradient projection in the case of rank-one measurement operators, which have concrete applications in blind deconvolution. Experimental results are reported that show near-optimal recovery for Gaussian and rank-one measurements, and that adaptive stepsizes give crucial improvement. A Riemannian proximal gradient method is derived for the special case of unknown sparsity

    Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization

    Full text link
    We study the question of reconstructing two signals ff and gg from their convolution y=f∗gy = f\ast g. This problem, known as {\em blind deconvolution}, pervades many areas of science and technology, including astronomy, medical imaging, optics, and wireless communications. A key challenge of this intricate non-convex optimization problem is that it might exhibit many local minima. We present an efficient numerical algorithm that is guaranteed to recover the exact solution, when the number of measurements is (up to log-factors) slightly larger than the information-theoretical minimum, and under reasonable conditions on ff and gg. The proposed regularized gradient descent algorithm converges at a geometric rate and is provably robust in the presence of noise. To the best of our knowledge, our algorithm is the first blind deconvolution algorithm that is numerically efficient, robust against noise, and comes with rigorous recovery guarantees under certain subspace conditions. Moreover, numerical experiments do not only provide empirical verification of our theory, but they also demonstrate that our method yields excellent performance even in situations beyond our theoretical framework

    Blind Demixing for Low-Latency Communication

    Full text link
    In the next generation wireless networks, lowlatency communication is critical to support emerging diversified applications, e.g., Tactile Internet and Virtual Reality. In this paper, a novel blind demixing approach is developed to reduce the channel signaling overhead, thereby supporting low-latency communication. Specifically, we develop a low-rank approach to recover the original information only based on a single observed vector without any channel estimation. Unfortunately, this problem turns out to be a highly intractable non-convex optimization problem due to the multiple non-convex rankone constraints. To address the unique challenges, the quotient manifold geometry of product of complex asymmetric rankone matrices is exploited by equivalently reformulating original complex asymmetric matrices to the Hermitian positive semidefinite matrices. We further generalize the geometric concepts of the complex product manifolds via element-wise extension of the geometric concepts of the individual manifolds. A scalable Riemannian trust-region algorithm is then developed to solve the blind demixing problem efficiently with fast convergence rates and low iteration cost. Numerical results will demonstrate the algorithmic advantages and admirable performance of the proposed algorithm compared with the state-of-art methods.Comment: 14 pages, accepted by IEEE Transaction on Wireless Communicatio

    Regularized Gradient Descent: A Nonconvex Recipe for Fast Joint Blind Deconvolution and Demixing

    Full text link
    We study the question of extracting a sequence of functions {fi,gi}i=1s\{\boldsymbol{f}_i, \boldsymbol{g}_i\}_{i=1}^s from observing only the sum of their convolutions, i.e., from y=∑i=1sfi∗gi\boldsymbol{y} = \sum_{i=1}^s \boldsymbol{f}_i\ast \boldsymbol{g}_i. While convex optimization techniques are able to solve this joint blind deconvolution-demixing problem provably and robustly under certain conditions, for medium-size or large-size problems we need computationally faster methods without sacrificing the benefits of mathematical rigor that come with convex methods. In this paper, we present a non-convex algorithm which guarantees exact recovery under conditions that are competitive with convex optimization methods, with the additional advantage of being computationally much more efficient. Our two-step algorithm converges to the global minimum linearly and is also robust in the presence of additive noise. While the derived performance bounds are suboptimal in terms of the information-theoretic limit, numerical simulations show remarkable performance even if the number of measurements is close to the number of degrees of freedom. We discuss an application of the proposed framework in wireless communications in connection with the Internet-of-Things.Comment: Accepted to Information and Inference: a Journal of the IM
    • …
    corecore