48,914 research outputs found

    Gradient-based Inference for Networks with Output Constraints

    Full text link
    Practitioners apply neural networks to increasingly complex problems in natural language processing, such as syntactic parsing and semantic role labeling that have rich output structures. Many such structured-prediction problems require deterministic constraints on the output values; for example, in sequence-to-sequence syntactic parsing, we require that the sequential outputs encode valid trees. While hidden units might capture such properties, the network is not always able to learn such constraints from the training data alone, and practitioners must then resort to post-processing. In this paper, we present an inference method for neural networks that enforces deterministic constraints on outputs without performing rule-based post-processing or expensive discrete search. Instead, in the spirit of gradient-based training, we enforce constraints with gradient-based inference (GBI): for each input at test-time, we nudge continuous model weights until the network's unconstrained inference procedure generates an output that satisfies the constraints. We study the efficacy of GBI on three tasks with hard constraints: semantic role labeling, syntactic parsing, and sequence transduction. In each case, the algorithm not only satisfies constraints but improves accuracy, even when the underlying network is state-of-the-art.Comment: AAAI 201

    Multi-Sample Online Learning for Probabilistic Spiking Neural Networks

    Full text link
    Spiking Neural Networks (SNNs) capture some of the efficiency of biological brains for inference and learning via the dynamic, online, event-driven processing of binary time series. Most existing learning algorithms for SNNs are based on deterministic neuronal models, such as leaky integrate-and-fire, and rely on heuristic approximations of backpropagation through time that enforce constraints such as locality. In contrast, probabilistic SNN models can be trained directly via principled online, local, update rules that have proven to be particularly effective for resource-constrained systems. This paper investigates another advantage of probabilistic SNNs, namely their capacity to generate independent outputs when queried over the same input. It is shown that the multiple generated output samples can be used during inference to robustify decisions and to quantify uncertainty -- a feature that deterministic SNN models cannot provide. Furthermore, they can be leveraged for training in order to obtain more accurate statistical estimates of the log-loss training criterion, as well as of its gradient. Specifically, this paper introduces an online learning rule based on generalized expectation-maximization (GEM) that follows a three-factor form with global learning signals and is referred to as GEM-SNN. Experimental results on structured output memorization and classification on a standard neuromorphic data set demonstrate significant improvements in terms of log-likelihood, accuracy, and calibration when increasing the number of samples used for inference and training.Comment: Submitte

    Connections Between Adaptive Control and Optimization in Machine Learning

    Full text link
    This paper demonstrates many immediate connections between adaptive control and optimization methods commonly employed in machine learning. Starting from common output error formulations, similarities in update law modifications are examined. Concepts in stability, performance, and learning, common to both fields are then discussed. Building on the similarities in update laws and common concepts, new intersections and opportunities for improved algorithm analysis are provided. In particular, a specific problem related to higher order learning is solved through insights obtained from these intersections.Comment: 18 page
    • …
    corecore