8,896 research outputs found

    Stable image reconstruction using total variation minimization

    Get PDF
    This article presents near-optimal guarantees for accurate and robust image recovery from under-sampled noisy measurements using total variation minimization. In particular, we show that from O(slog(N)) nonadaptive linear measurements, an image can be reconstructed to within the best s-term approximation of its gradient up to a logarithmic factor, and this factor can be removed by taking slightly more measurements. Along the way, we prove a strengthened Sobolev inequality for functions lying in the null space of suitably incoherent matrices.Comment: 25 page

    Ab initio compressive phase retrieval

    Full text link
    Any object on earth has two fundamental properties: it is finite, and it is made of atoms. Structural information about an object can be obtained from diffraction amplitude measurements that account for either one of these traits. Nyquist-sampling of the Fourier amplitudes is sufficient to image single particles of finite size at any resolution. Atomic resolution data is routinely used to image molecules replicated in a crystal structure. Here we report an algorithm that requires neither information, but uses the fact that an image of a natural object is compressible. Intended applications include tomographic diffractive imaging, crystallography, powder diffraction, small angle x-ray scattering and random Fourier amplitude measurements.Comment: 7 pages, 4 figures, presented at the XXI IUCr Congress, Aug. 2008, Osaka Japa

    TV-min and Greedy Pursuit for Constrained Joint Sparsity and Application to Inverse Scattering

    Full text link
    This paper proposes a general framework for compressed sensing of constrained joint sparsity (CJS) which includes total variation minimization (TV-min) as an example. TV- and 2-norm error bounds, independent of the ambient dimension, are derived for the CJS version of Basis Pursuit and Orthogonal Matching Pursuit. As an application the results extend Cand`es, Romberg and Tao's proof of exact recovery of piecewise constant objects with noiseless incomplete Fourier data to the case of noisy data.Comment: Mathematics and Mechanics of Complex Systems (2013

    Compressed sensing for wide-field radio interferometric imaging

    Full text link
    For the next generation of radio interferometric telescopes it is of paramount importance to incorporate wide field-of-view (WFOV) considerations in interferometric imaging, otherwise the fidelity of reconstructed images will suffer greatly. We extend compressed sensing techniques for interferometric imaging to a WFOV and recover images in the spherical coordinate space in which they naturally live, eliminating any distorting projection. The effectiveness of the spread spectrum phenomenon, highlighted recently by one of the authors, is enhanced when going to a WFOV, while sparsity is promoted by recovering images directly on the sphere. Both of these properties act to improve the quality of reconstructed interferometric images. We quantify the performance of compressed sensing reconstruction techniques through simulations, highlighting the superior reconstruction quality achieved by recovering interferometric images directly on the sphere rather than the plane.Comment: 15 pages, 8 figures, replaced to match version accepted by MNRA

    Compressive Sensing Using Iterative Hard Thresholding with Low Precision Data Representation: Theory and Applications

    Full text link
    Modern scientific instruments produce vast amounts of data, which can overwhelm the processing ability of computer systems. Lossy compression of data is an intriguing solution, but comes with its own drawbacks, such as potential signal loss, and the need for careful optimization of the compression ratio. In this work, we focus on a setting where this problem is especially acute: compressive sensing frameworks for interferometry and medical imaging. We ask the following question: can the precision of the data representation be lowered for all inputs, with recovery guarantees and practical performance? Our first contribution is a theoretical analysis of the normalized Iterative Hard Thresholding (IHT) algorithm when all input data, meaning both the measurement matrix and the observation vector are quantized aggressively. We present a variant of low precision normalized {IHT} that, under mild conditions, can still provide recovery guarantees. The second contribution is the application of our quantization framework to radio astronomy and magnetic resonance imaging. We show that lowering the precision of the data can significantly accelerate image recovery. We evaluate our approach on telescope data and samples of brain images using CPU and FPGA implementations achieving up to a 9x speed-up with negligible loss of recovery quality.Comment: 19 pages, 5 figures, 1 table, in IEEE Transactions on Signal Processin
    corecore