95,624 research outputs found

    Model updating using uncertain experimental modal data

    Get PDF
    The propagation of parameter uncertainty in structural dynamics has become a feasible method to determine the probabilistic description of the vibration response of industrial scale �nite element models. Though methods for uncertainty propagation have been developed extensively, the quanti�cation of parameter uncertainty has been neglected in the past. But a correct assumption for the parameter variability is essential for the estimation of the uncertain vibration response. This paper shows how to identify model parameter means and covariance matrix from uncertain experimental modal test data. The common gradient based approach from deterministic computational model updating was extended by an equation that accounts for the stochastic part. In detail an inverse approach for the identi�cation of statistical parametric properties will be presented which will be applied on a numerical model of a replica of the GARTEUR SM-AG19 benchmark structure. The uncertain eigenfrequencies and mode shapes have been determined in an extensive experimental modal test campaign where the aircraft structure was tested repeatedly while it was 130 times dis- and reassembled in between each experimental modal analysis

    Identification of shallow sea models

    Get PDF
    In this paper we consider a parameter estimation procedure for shallow sea models. The method is formulated as a minimization problem. An adjoint model is used to calculate the gradient of the criterion which is to be minimized. In order to obtain a robust estimation method, the uncertainty of the open boundary conditions can be taken into acoount by allowing random noise inputs to act on the open boundaries. This method avoids the possibility that boundary errors are interpreted by the estimation procedure as parameter fluctuations. We apply the parameter estimation method to identify a shallow sea model of the entire European continental shelf. First, a space-varying bottom friction coefficient is estimated simultaneously with the depth. The second application is the estimation of the parameterization of the wind stress coefficient as a function of the wind velocity. Finally, an uncertain open boundary condition is included. It is shown that in this case the parameter estimation procedure does become more robust and produces more realistic estimates. Furthermore, an estimate of the open boundary conditions is also obtained

    Sufficient Conditions for Feasibility and Optimality of Real-Time Optimization Schemes - II. Implementation Issues

    Get PDF
    The idea of iterative process optimization based on collected output measurements, or "real-time optimization" (RTO), has gained much prominence in recent decades, with many RTO algorithms being proposed, researched, and developed. While the essential goal of these schemes is to drive the process to its true optimal conditions without violating any safety-critical, or "hard", constraints, no generalized, unified approach for guaranteeing this behavior exists. In this two-part paper, we propose an implementable set of conditions that can enforce these properties for any RTO algorithm. This second part examines the practical side of the sufficient conditions for feasibility and optimality (SCFO) proposed in the first and focuses on how they may be enforced in real application, where much of the knowledge required for the conceptual SCFO is unavailable. Methods for improving convergence speed are also considered.Comment: 56 pages, 15 figure
    • …
    corecore